首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reveal E. coli 2.0 is a new lateral-flow immunodiagnostic test for detection of E. coli O157:H7 and O157:NM in raw beef trim and ground beef. Compared with the original Reveal E. coli O157:H7 assay, the new test utilizes a unique antibody combination resulting in improved test specificity. The device architecture and test procedure have also been modified, and a single enrichment protocol was developed which allows the test to be performed at any point during an enrichment period of 12 to 20 h. Results of inclusivity and exclusivity testing showed that the test is specific for E. coli serotypes O157:H7 and O157:NM, with the exception of two strains of O157:H38 and one strain of O157:H43 which produced positive reactions. In internal and independent laboratory trials comparing the Reveal 2.0 method to the U.S. Department of Agriculture-Food Safety and Inspection Service reference culture procedure for detection of E. coli O157:H7 in 65 and 375 g raw beef trim and ground beef samples, there were no statistically significant differences in method performance with the exception of a single internal trial with 375 g ground beef samples in which the Reveal method produced significantly more positive results. There were no unconfirmed positive results by the Reveal assay, for specificity of 100%. Results of ruggedness testing showed that the Reveal test produces accurate results even with substantial deviation in sample volume or device incubation time or temperature. However, addition of the promoter reagent to the test sample prior to introducing the test device is essential to proper test performance.  相似文献   

2.
3.
The use of classification and regression trees (CART) was studied in a quantitative structure-retention relationship (QSRR) context to predict the retention in 13 thin layer chromatographic screening systems on a silica gel, where large datasets of interlaboratory determined retention are available. The response (dependent variable) was the rate mobility (RM) factor, while a set of atomic contributions and functional substituent counts was used as an explanatory dataset. The trees were investigated against optimal complexity (number of the leaves) by external validation and internal crossvalidation. Their predictive performance is slightly lower than full atomic contribution model, but the main advantage is the simplicity. The retention prediction with the proposed trees can be done without computer or even pocket calculator.  相似文献   

4.
Zusammenfassung Die Massenspektren einer Reihe monocyclischer Ketone sind gemessen worden. Durch Vergleich der Spektren mit denen deuterierter Derivate ist es möglich, plausible Mechanismen für die Bildung charakteristischer Fragmente abzuleiten.Mit 6 Abbildungen43. Mitt. sieheD. H. Williams, C. Beard, H. Budzikiewicz undC. Djerassi, J. Amer. chem. Soc., in Druck.Die Arbeit wurde mit finanzieller Unterstützung der National Institutes of Health, U.S. Public Health Service (Grant No. 5T4 CA5061 und AM-04257) durchgeführt.  相似文献   

5.
(1) Background: Data accuracy plays a key role in determining the model performances and the field of metabolism prediction suffers from the lack of truly reliable data. To enhance the accuracy of metabolic data, we recently proposed a manually curated database collected by a meta-analysis of the specialized literature (MetaQSAR). Here we aim to further increase data accuracy by focusing on publications reporting exhaustive metabolic trees. This selection should indeed reduce the number of false negative data. (2) Methods: A new metabolic database (MetaTREE) was thus collected and utilized to extract a dataset for metabolic data concerning glutathione conjugation (MT-dataset). After proper pre-processing, this dataset, along with the corresponding dataset extracted from MetaQSAR (MQ-dataset), was utilized to develop binary classification models using a random forest algorithm. (3) Results: The comparison of the models generated by the two collected datasets reveals the better performances reached by the MT-dataset (MCC raised from 0.63 to 0.67, sensitivity from 0.56 to 0.58). The analysis of the applicability domain also confirms that the model based on the MT-dataset shows a more robust predictive power with a larger applicability domain. (4) Conclusions: These results confirm that focusing on metabolic trees represents a convenient approach to increase data accuracy by reducing the false negative cases. The encouraging performances shown by the models developed by the MT-dataset invites to use of MetaTREE for predictive studies in the field of xenobiotic metabolism.  相似文献   

6.
The semiempirical SCF MO method MSINDO (modified symmetrically orthogonalized intermediate neglect of differential overlap) [T. Bredow and K. Jug, Electronic Encyclopedia of Computational Chemistry, 2004] is extended to the calculation of excited state properties through implementation of the configuration interaction singles (CIS) approach. MSINDO allows the calculation of periodic systems via the cyclic cluster model (CCM) [T. Bredow et al., J. Comput. Chem., 2001, 22, 89] which is a direct-space approach and therefore can be in principle combined with all molecular quantum-chemical techniques. The CIS equations are solved for a cluster with periodic boundary conditions using the Davidson-Liu iterative block diagonalization approach. As a proof-of-principle, MSINDO-CCM-CIS is applied for the calculation of optical spectra of ZnO and TiO(2), oxygen-defective rutile, and F-centers in NaCl. The calculated spectra are compared to available experimental and theoretical literature data. After re-adjustment of the empirical parameters the quantitative agreement with experiment is satisfactory. The present approximate approach is one of the first examples of a quantum-chemical methodology for solids where excited states are correctly described as n-electron state functions. After careful benchmark testing it will allow calculation of photophysical and photochemical processes relevant to materials science and catalysis.  相似文献   

7.
In this study, we have investigated quantitative relationships between critical temperatures of superconductive inorganic materials and the basic physicochemical attributes of these materials (also called quantitative structure-property relationships). We demonstrated that one of the most recent studies (titled "A data-driven statistical model for predicting the critical temperature of a superconductor” and published in Computational Materials Science by K. Hamidieh in 2018) reports on models that were based on the dataset that contains 27% of duplicate entries. We aimed to deliver stable models for a properly cleaned dataset using the same modeling techniques (multiple linear regression, MLR, and gradient boosting decision trees, XGBoost). The predictive ability of our best XGBoost model (R2 = 0.924, RMSE = 9.336 using 10-fold cross-validation) is comparable to the XGBoost model by the author of the initial dataset (R2 = 0.920 and RMSE = 9.5 K in ten-fold cross-validation). At the same time, our best model is based on less sophisticated parameters, which allows one to make more accurate interpretations while maintaining a generalizable model. In particular, we found that the highest relative influence is attributed to variables that represent the thermal conductivity of materials. In addition to MLR and XGBoost, we explored the potential of other machine learning techniques (NN, neural networks and RF, random forests).  相似文献   

8.
Many microarray experiments involve examining the time elapsed prior to the occurrence of a specific event. One purpose of these studies is to relate the gene expressions to the survival times. The Cox proportional hazards model has been the major tool for analyzing such data. The transformation model provides a viable alternative to the classical Cox's model. We investigate the use of transformation models in microarray survival data in this paper. The transformation model, which can be viewed as a generalization of proportional hazards model and the proportional odds model, is more robust than the proportional hazards model, because it is not susceptible to erroneous results for cases when the assumption of proportional hazards is violated. We analyze a gene expression dataset from Beer et al. [Beer, D.G., Kardia, S.L., Huang, C.C., Giordano, T.J., Levin, A.M., Misek, D.E., Lin, L., Chen, G., Gharib, T.G., Thomas, D.G., Lizyness, M.L., Kuick, R., Hayasaka, S., Taylor, J.M., Iannettoni, M.D., Orringer, M.B., Hanash, S., 2002. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8 (8), 816-824] and show that the transformation model provides higher prediction precision than the proportional hazards model.  相似文献   

9.
A new approach for automatic parallel processing of large mass spectral datasets in a distributed computing environment is demonstrated to significantly decrease the total processing time. The implementation of this novel approach is described and evaluated for large nanoLC-FTICR-MS datasets. The speed benefits are determined by the network speed and file transfer protocols only and allow almost real-time analysis of complex data (e.g., a 3-gigabyte raw dataset is fully processed within 5 min). Key advantages of this approach are not limited to the improved analysis speed, but also include the improved flexibility, reproducibility, and the possibility to share and reuse the pre- and postprocessing strategies. The storage of all raw data combined with the massively parallel processing approach described here allows the scientist to reprocess data with a different set of parameters (e.g., apodization, calibration, noise reduction), as is recommended by the proteomics community. This approach of parallel processing was developed in the Virtual Laboratory for e-Science (VL-e), a science portal that aims at allowing access to users outside the computer research community. As such, this strategy can be applied to all types of serially acquired large mass spectral datasets such as LC-MS, LC-MS/MS, and high-resolution imaging MS results.  相似文献   

10.
11.
Books Section     
Abstract

Colombo, A.G. (1992). Environmental Impact Assessment. Kluwer Academic Publishers, Dordrecht, p. 334 + xii pp., Hardcover, ISBN: 0-7923-1589-8, Dfl180.00; £61.00.

Martin, G. and Laffort, P. (1991). Odeurs et Désodorisation dans l'Environnement. (Odors and Desodorisation in the Environment). TEC & DOC – Lavoisier, Paris. p. 452 + xxiv pp., Hardcover, In French, ISBN: 2-85206-605-X, FF 565.00.

Yalkowsky, S. H. and Banerjee, S. (1992). Aqueous Solubility: Methods of Estimation for Organic Compounds. Marcel Dekker, Inc., New York. p. 264 + vi pp., Hardcover, ISBN: 0-8247-8615-7, US$99.75 (U.S. and Canada) US$114.50 (all other countries).  相似文献   

12.
Sankaran S  Ehsani R  Etxeberria E 《Talanta》2010,83(2):574-581
In recent years, Huanglongbing (HLB) also known as citrus greening has greatly affected citrus orchards in Florida. This disease has caused significant economic and production losses costing about $750/acre for HLB management. Early and accurate detection of HLB is a critical management step to control the spread of this disease. This work focuses on the application of mid-infrared spectroscopy for the detection of HLB in citrus leaves. Leaf samples of healthy, nutrient-deficient, and HLB-infected trees were processed in two ways (process-1 and process-2) and analyzed using a rugged, portable mid-infrared spectrometer. Spectral absorbance data from the range of 5.15-10.72 μm (1942-933 cm−1) were preprocessed (baseline correction, negative offset correction, and removal of water absorbance band) and used for data analysis. The first and second derivatives were calculated using the Savitzky-Golay method. The preprocessed raw dataset, first derivatives dataset, and second derivatives dataset were first analyzed by principal component analysis. Then, the selected principal component scores were classified using two classification algorithms, quadratic discriminant analysis (QDA) and k-nearest neighbor (kNN). When the spectral data from leaf samples processed using process-1 were used for data analysis, the kNN-based algorithm yielded higher classification accuracies (especially nutrient-deficient leaf class) than that of the other spectral data (process-2). The performance of the kNN-based algorithm (higher than 95%) was better than the QDA-based algorithm. Moreover, among different types of datasets, preprocessed raw dataset resulted in higher classification accuracies than first and second derivatives datasets. The spectral peak in the region of 9.0-10.5 μm (952-1112 cm−1) was found to be distinctly different between the healthy and HLB-infected leaf samples. This carbohydrate peak could be attributed to the starch accumulation in the HLB-infected citrus leaves. Thus, this study demonstrates the applicability of mid-infrared spectroscopy for HLB detection in citrus.  相似文献   

13.
将来源于Alcaligenes A-6的D-氨基酰化酶基因用大肠杆菌中的丰沛密码子替换, 利用化学和基于聚合酶链反应(PCR)技术的酶促方法进行基因全合成, 利用pET-32a构建重组表达载体pET-dan, 转化进E.coil BL21(DE3)中进行融合表达. 经SDS-PAGE电泳、 Western-blot检测和活性测定发现, D-ANase可在大肠杆菌中高效表达, 目的蛋白可达到菌体总蛋白的69.2%, 密码子优化后基因构建的工程菌发酵活性为96 U/mL, 重组蛋白经超声细胞破碎及Ni2+柱亲和层析纯化, 比活可达1692.3 U/mg, 纯度可达95%以上.  相似文献   

14.
Untargeted metabolomics based on liquid chromatography coupled with mass spectrometry (LC–MS) can detect thousands of features in samples and produce highly complex datasets. The accurate extraction of meaningful features and the building of discriminant models are two crucial steps in the data analysis pipeline of untargeted metabolomics. In this study, pure ion chromatograms were extracted from a liquor dataset and left-sided colon cancer (LCC) dataset by K-means-clustering-based Pure Ion Chromatogram extraction method version 2.0 (KPIC2). Then, the nonlinear low-dimensional embedding by uniform manifold approximation and projection (UMAP) showed the separation of samples from different groups in reduced dimensions. The discriminant models were established by extreme gradient boosting (XGBoost) based on the features extracted by KPIC2. Results showed that features extracted by KPIC2 achieved 100% classification accuracy on the test sets of the liquor dataset and the LCC dataset, which demonstrated the rationality of the XGBoost model based on KPIC2 compared with the results of XCMS (92% and 96% for liquor and LCC datasets respectively). Finally, XGBoost can achieve better performance than the linear method and traditional nonlinear modeling methods on these datasets. UMAP and XGBoost are integrated into KPIC2 package to extend its performance in complex situations, which are not only able to effectively process nonlinear dataset but also can greatly improve the accuracy of data analysis in non-target metabolomics.  相似文献   

15.
16.
17.
《Analytical letters》2012,45(13):2238-2254
A new variable selection method called ensemble regression coefficient analysis is reported on the basis of model population analysis. In order to construct ensemble regression coefficients, many subsets of variables are randomly selected to calibrate corresponding partial least square models. Based on ensemble theory, the mean of regression coefficients of the models is set as the ensemble regression coefficient. Subsequently, the absolute value of the ensemble regression coefficient can be applied as an informative vector for variable selection. The performance of ensemble regression coefficient analysis was assessed by four near infrared datasets: two simulated datasets, one wheat dataset, and one tobacco dataset. The results showed that this approach can select important variables to obtain fewer errors compared with regression coefficient analysis and Monte Carlo uninformative variable elimination.  相似文献   

18.
Knowledge of structural classes is useful in understanding of folding patterns in proteins. Although existing structural class prediction methods applied virtually all state-of-the-art classifiers, many of them use a relatively simple protein sequence representation that often includes amino acid (AA) composition. To this end, we propose a novel sequence representation that incorporates evolutionary information encoded using PSI-BLAST profile-based collocation of AA pairs. We used six benchmark datasets and five representative classifiers to quantify and compare the quality of the structural class prediction with the proposed representation. The best, classifier support vector machine achieved 61-96% accuracy on the six datasets. These predictions were comprehensively compared with a wide range of recently proposed methods for prediction of structural classes. Our comprehensive comparison shows superiority of the proposed representation, which results in error rate reductions that range between 14% and 26% when compared with predictions of the best-performing, previously published classifiers on the considered datasets. The study also shows that, for the benchmark dataset that includes sequences characterized by low identity (i.e., 25%, 30%, and 40%), the prediction accuracies are 20-35% lower than for the other three datasets that include sequences with a higher degree of similarity. In conclusion, the proposed representation is shown to substantially improve the accuracy of the structural class prediction. A web server that implements the presented prediction method is freely available at http://biomine.ece.ualberta.ca/Structural_Class/SCEC.html.  相似文献   

19.
Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as complementary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that the glycosylation site occurs at the N-X-[S/T] sequon, where X is any amino acid except proline. Not all N-X-[S/T] sequons are glycosylated, thus the N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In that regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem. Here, we report DeepNGlyPred a deep learning-based approach that encodes the positive and negative sequences in the human proteome dataset (extracted from N-GlycositeAtlas) using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary information. DeepNGlyPred produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 0.60, and 79.41%, respectively on N-GlyDE independent test set, which is better than the compared approaches. These results demonstrate that DeepNGlyPred is a robust computational technique to predict N-Linked glycosylation sites confined to N-X-[S/T] sequon. DeepNGlyPred will be a useful resource for the glycobiology community.  相似文献   

20.
Recent measurements of trans-hydrogen bond deuterium isotope effects (DIEs) on 13C chemical shifts in nucleic acids (Vakonakis, I.; LiWang, A. C. J. Biomol. NMR 2004, 29, 65; J. Am. Chem. Soc. 2004, 126, 5688) have led to intriguing results: (i) the DIEs of A:T pairs in DNA are about 5 ppb smaller than those of A:U in RNA and (ii) A:T DIEs vary by as much as 13 ppb among the oligonucleotides. The first observation suggests that inter-base H-bonds in RNA may be stronger than those in DNA, while the second indicates that the conformation of the base pair modulates the transmission of the isotope effect across the hydrogen bond. In an effort at providing a rationale--so far unknown--for the observed DIEs in nucleic acids, density functional theory and hybrid Car-Parrinello/molecular mechanical calculations of DIEs on nucleosides and nucleotides in the gas phase and in aqueous solution have been performed. The calculations suggest that (i) the DIE in an isolated A:T base pair differs from that in an A:U base pair because of the changes in the magnetic properties caused by the replacement of a methyl group on passing from U to T, (ii) the DIEs depend crucially on the conformation of the base pairs, and (iii) the DIEs are strongly affected by magnetic and electrostatic interactions with the surrounding environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号