共查询到20条相似文献,搜索用时 15 毫秒
1.
IntroductionTurbulentflowladenwithparticlesisacommonocurenceinbothnatureandindustry.Recentresearchhasshownthattheparticlecon... 相似文献
2.
3.
We present a selection of results from experiments on an air turbulent jet flow, which included measurements of all the three velocity components and their nine gradients with the emphasis on the properties of invariant quantities related to velocity gradients (enstrophy, dissipation, enstrophy generation, etc.). This has been achieved by a 21 hot wire probe (5 arrays x 4 wires and a cold wire), appropriate calibration unit and a 3-D calibration procedure [1]. A more detailed account on the results will be published elsewhere. 相似文献
4.
D. V. Sadin A. N. Dobrolyubov V. P. Zyuzlikov K. V. Mogilenko B. E. Sinil’shchikov 《Journal of Applied Mechanics and Technical Physics》2008,49(3):417-424
A mathematical model and a method for calculating a gas-droplet turbulent jet with allowance for velocity nonequilibrium and
virtual mass of the condensed phase during turbulent fluctuations and also heat and mass transfer within the three-temperature
scheme are developed. Methodical calculations are performed. The results of these calculations are in reasonable agreement
with available experimental data. The structure of the gas-droplet jet in a cocurrent high-velocity high-temperature gas flow
is studied by numerical methods. The ratio of intensities of heat and mass transfer between the phases and turbulent diffusion
transfers of substances is found to be different at the initial, transitional, and basic segments of the jet. This difference
is responsible for the nonmonotonic axial distribution of vapor density and the lines of the halved mass flow of the condensed
phase.
__________
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 85–94, May–June, 2008. 相似文献
5.
Gas-particle two-phase turbulent flow in a vertical duct 总被引:5,自引:0,他引:5
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.
Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents. 相似文献
6.
J. N. E. Papaspyros E. G. Kastrinakis S. G. Nychas 《Applied Scientific Research》1996,57(3-4):291-307
In this work, an experimental study of a jet issuing in cross flow is reported. Support is offered to a theory on the origin
of Karman-like vortices, in the wake of jets issuing in boundary layers. Further, a coherent structure with strong contribution
to the energetics of the flow field is identified here. This structure has not been reported earlier, according to the present
authors' knowledge, and it is shown to be related to engulfment of external fluid at the bottom of the jet, and to interesting
stochastic and spectral characteristics of the flow field. Three-dimensional plots of the coherent quantities, based on experimental
data, reveal a double-helical morphology of the coherent structure. The same morphology has recently been proposed for the
far field of jets issuing in stagnant fluid (i.e., without cross flow). The results of this study are expected to support
theoretical and numerical work on jets issuing in cross flow. 相似文献
7.
To investigate the behaviour of inter-particle collision and its effects on particle dispersion, direct numerical simulation of a three-dimensional two-phase turbulent jet was conducted. The finite volume method and the fractional-step projection algorithm were used to solve the governing equations of the gas phase fluid and the Lagrangian method was applied to trace the particles. The deterministic hard-sphere model was used to describe the inter-particle collision. In order to allow an analysis of inter-particle collisions independent of the effect of particles on the flow, two-way coupling was neglected. The inter-particle collision occurs frequently in the local regions with higher particle concentration of the flow field. Under the influence of the local accumulation and the turbulent transport effects, the variation of the average inter-particle collision number with the Stokes number takes on a complex non-linear relationship. The particle distribution is more uniform as a result of inter-particle collisions, and the lateral and the spanwise dispersion of the particles considering inter-particle collision also increase. Furthermore, for the case of particles with the Rosin–Rammler distribution (the medial particle size is set d50 = 36.7 μm), the collision number is significantly larger than that of the particles at the Stokes number of 10, and their effects on calculated results are also more significant. 相似文献
8.
Yu. V. Zuev 《Journal of Applied Mechanics and Technical Physics》2005,46(3):329-338
It is shown that there are no self-similarity and similarity of transverse fields of correlation moments of fluctuating parameters
of phases in two-phase jets, in contrast to one-phase jets. The influence of the initial values of a number of parameters
of a two-phase jet (gas temperature, volume concentration of droplets in the initial cross section, and radius of the initial
cross section of the jet) on turbulence characteristics is analyzed on the basis of numerical simulations.
__________
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 29–40, May–June, 2005. 相似文献
9.
O. A. Druzhinin 《Fluid Dynamics》2009,44(2):213-223
The process of generation of internal waves by an initially cylindrical, turbulent jet with a Gaussian profile of the average horizontal velocity component in a fluid with stable linear density stratification is investigated by direct numerical simulation. It is shown that on time intervals Nt < 30, where N is the buoyancy frequency, the vertical velocity pulsations collapse, which is accompanied by the generation of internal waves whose spatial period is close to the wavelength of the spiral mode of jet instability in a homogeneous fluid. The wave dynamics and kinematics can be satisfactorily described by the linear theory for a pulsed source and their parameters are in good agreement with the parameters of the “coherent” internal waves generated by a stratified wake in a laboratory experiment. At large times the wave generation ceases and the variations of the fluid density are localized in the neighborhood of the centers of large-scale vortices formed in the horizontal plane in the neighborhood of the jet. 相似文献
10.
An experimental investigation of the influence of jet precession on the formation of large-scale instantaneous turbulent particle clusters is reported. Instantaneous planar particle distributions in the first seven nozzle diameters downstream from a simulated pulverised fuel burner have been measured using planar nephelometry, a laser-based instantaneous concentration technique. Large-scale instantaneous particle clusters (ITPCs) are identified and quantified from these data. A systematic study is conducted to assess the influence of the ratio of the precessing jet to axial momentum streams on ITPCs. The results show that ITPCs can be modified by this momentum ratio. The average size of ITPCs reaches a maximum for cases with high precessional momentum, although excessive precessional momentum can reduce ITPC size. The particle number density per unit area inside these ITPCs reaches a maximum for an intermediate value of jet precession. The spread of ITPC centroids can be estimated from the mean jet spread of particles and therefore increases with increasing precessing jet momentum once above a certain threshold. 相似文献
11.
A flat plate experiment was performed in a water tunnel to determine the effects of a vortex generator jet on the characteristics of a turbulent boundary layer at various wall normal locations. The results show that the characteristic distributions of the turbulent fluctuation quantities are nearly unaffected by the induced vortex structures neither in the steady nor in the dynamic blowing case. The shear layer interaction between the turbulent main flow and the jet flow produces less turbulent fluctuations than it is expected from a turbulent free jet flow. Thus, the mixing process of this flow control strategy is based only on a large-scale momentum transport superimposed by the turbulent fluctuation quantities. This allows a separation of scales for physical interpretation and numerical simulations. 相似文献
12.
J. G. M. Eggels J. Westerweel F. T. M. Nieuwstadt R. J. Adrian 《Applied Scientific Research》1993,51(1-2):319-324
Fully developed turbulent pipe flow at low Re-number is studied by means of direct numerical simulation (DNS). In contrast to many previous DNS's of turbulent flows in rectangular geometries, the present DNS code, developed for a cylindrical geometry, is based on the finite volume technique rather than being based on a spectral method. The statistical results are compared with experimental data obtained with two different experimental techniques. The agreement between numerical and experimental results is found to be good which indicates that the present DNS code is suited for this kind of numerical simulations. 相似文献
13.
The prediction of the response of unsteady flows submitted to external excitation is a real challenge for the optimization of industrial processes. As the jet flow is a very basic turbulent flow related to mixing and entrainment phenomena via turbulent structure dynamic, we investigate the transient behavior of an axisymmetric jet submitted to a large and sudden decrease of its ejection velocity. The non stationary flow evolution is studied experimentally. Measurements along the jet axis based on pure ensemble averaging show clearly the convective motion of the perturbation and the adaptation of the local interaction to the local jet time scale. A transverse investigation in the non stationary region show that the mean flow and its turbulence is deeply affected during the local velocity decrease. 相似文献
14.
Random particle motion in a turbulent and molecular velocity fluctuation field is considered. Using a spectral representation of the carrier-phase Eulerian velocity fluctuation correlations, a closed system of integral equations for calculating the carrier-phase velocity correlation along the particle trajectory and the particle Lagrangian velocity fluctuation correlation is obtained. Based on this system, the fluctuations of the particle parameters are analyzed. In the limiting case of a passive admixture, an estimate is found for the ratio of the integral Lagrangian and Eulerian time scales and the Kolmogorov constant for the Lagrangian structure function of the carrier-phase velocity fluctuations. 相似文献
15.
I. V. Derevich 《Fluid Dynamics》2008,43(3):357-368
On the basis of a statistical approach using a probability density function for the coordinates of two particles in a turbulent flow, the parameters of the relative particle motion are investigated. For the functions describing particle entrainment in the turbulence, rigorous results are obtained using a 3D turbulence spectrum. A method of calculating the particle relative-velocity rate with account for particle trajectory correlation is presented. The effects of particle inertia and velocity slip on the parameters of the relative particle motion are studied. Simple approximating formulas for calculating the relative particle motion in a turbulent flow are proposed. The calculation results are compared with the data of direct numerical simulation of stochastic particle trajectories in an isotropic turbulent field. 相似文献
16.
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38 × 105 based on the jet diameter. Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena, including flow structures, turbulent characters and frequency behaviors, have been studied. The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures, vortical structures and jet shear layers. The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio. Turbulent characters are clarified to be closely related to the flow structures. The jet penetration increases with the increase of the momentum ratio. Moreover, the dominant frequencies of the flow structures are obtained using spectral analysis. The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow. 相似文献
17.
Il Ayranc Guillaume Pinguet Dany Escudi Nevin Seluk Rodolphe Vaillon Frdric Andr 《Experimental Thermal and Fluid Science》2007,31(8):839-847
Measurement of particle concentration by laser Doppler anemometry (LDA) is studied on a vertical air jet seeded by a powder disperser with controlled particle and air flow rates. Particle arrival rate is utilized to retrieve particle number densities from conventional LDA operation. The effect of polydisperse nature of the particles is assessed. Comparisons between measured and estimated particle number densities suggest that only a certain portion of the particle population with a particle size to fringe spacing ratio around unity can be detected. Results indicate that reliable measurement of absolute particle concentration is possible for a particle population of narrow size distribution with an average diameter equivalent to fringe spacing. Present number density measurement technique which is useful for practical purposes with conventional LDA systems is found to yield physically reasonable profiles in both laminar and turbulent regimes. 相似文献
18.
19.
Donald J. Bergstrom 《国际流体数值方法杂志》1992,14(8):907-918
A numerical prediction is obtained for the mean pressure field in the similarity region of a plane turbulent jet. An algebraic stress model, which introduces non-isotropic relations for the Reynolds stress components, is used to close the mean momentum equation. The full two-dimensional form of the transport equations is retained and the resultant equation set solved elliptically. The numerical prediction simulates many of the characteristics of the pressure field measured by experimental studies. However, the overall level of the predicted field is lower than the experimental values. The level obtained for the mean pressure field depends strongly on the prediction for the transverse normal Reynolds stress component 〈u2u2〉. The pressure field is shown to represent a small negative contribution to the net strearnwise momentum balance. 相似文献