首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ag/TiO2 sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. TiCl4 was converted to Ti(OH)4 gel. The Ag/TiO2 sol was prepared by a process where H2O2 was added and then heated at 90–97 °C. After condensation reaction and crystallization, a transparent sol with suspended Ag/TiO2 was formed. Ag/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, contact angle analysis, and X-ray photoelectron spectroscopy. The photocatalytic properties of Ag/TiO2 film were evaluated by degradation of methylene blue in aqueous solution under UV light irradiation. The suspended Ag/TiO2 particles were rhombus primary particles with the major axis ca. 40 nm and the minor axis ca. 10 nm. Ag nanoparticles were well dispersed on TiO2 and the particle size was only 1–2 nm. Ag could restrain the recombination of photo-generated electrons and holes effectively. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The thin film had strong hydrophilicity after being illuminated by UV light. Ag/TiO2 film showed a significant increase in photocatalytic activity compared to the TiO2 film. The high amount of surface hydroxyls on Ag/TiO2 film also played an important role in its photocatalytic activity.  相似文献   

2.
《Current Applied Physics》2009,9(5):1097-1105
TiO2 nanoparticles doped with different Ag contents were prepared by a modified sol–gel method, using titanium tetraisopropoxide and silver nitrate as precursors and 2-propanol as solvent. Silver was incorporated into the TiO2 matrix via decomposition of AgNO3 during thermal treatment in different atmospheres. Effects of Ag doping on the crystallization and phase transition of the TiO2 nanoparticles were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Raman spectroscopy techniques. While air annealing incorporates silver into TiO2 matrix in silver oxide form, annealing in nitrogen incorporates metallic silver into TiO2. Formation of silver oxide increases the thermal stability of the TiO2 particles. Silver oxide affects the crystallization process of TiO2 particles and the temperature of transition form anatase to rutile. On the other hand, presence of metallic silver in the samples annealed in nitrogen atmosphere decreases the temperature of phase transition of TiO2 nanoparticles.  相似文献   

3.
In the present study, a two-step method was applied to synthesise Cu2+-modified TiO2 nanorod array thin films for photocatalytic processes. TiO2 nanorod array thin films were synthesised by a hydrothermal method and then modified with an ultrasonic-assisted sequential cation adsorption method. The samples were characterised by X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (DRS), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) analysis. The photoelectrochemical properties of the samples were evaluated by linear sweep voltammetry and Mott–Schottky analysis; photocatalytic activities were tested by methylene blue degradation under visible light. The photocurrent density of the TiO2/FTO sample modified with 50 mM Cu2+ solution was 26 times higher than that of the unmodified TiO2/FTO sample. Additionally, methylene blue degradation efficiency under visible light was increased 40% with respect to the efficiency of the unmodified sample. The mechanism of the photocatalytic activity enhancement of Cu2+-modified TiO2 nanorod films was discussed.  相似文献   

4.
Flower-like Bi12TiO20 hierarchical nanostructures composed of numerous nanobelts were synthesized at 180 °C within 1 h by a microwave-assisted hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB) for the first time. The as-prepared products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet–visible (UV–vis) absorption spectroscopy. Furthermore, the hierarchical Bi12TiO20 nanostructures exhibited higher photocatalytic activities in the degradation of Rhodamine B under visible-light irradiation than that of the samples prepared without CTAB. In addition, the role of CTAB cationic surfactant has been investigated thoroughly and a possible mechanism is proposed.  相似文献   

5.
Luminescence of silver nanoparticles photodeposited on titan dioxide nanoparticles of mesoporous film is studied. Luminescence was registered under the two-photon excitation by femtosecond laser pulses of Ti:sapphire laser. It occurs that Ag/TiO2 mesoporous films have high concentration of bright luminescence spots which reveal stability to degradation under long illumination. Various configurations of silver nanoparticles are analyzed to explain the physics of bright luminescence spots (“hot spots”). Luminescence intensity reveals “hot spots” dependence on excitation laser pulse polarization. Properties of Ag/TiO2 system show its promising usage for single molecule spectroscopy and biological objects visualization.  相似文献   

6.
A mesoporous S,I-codoped TiO2 photocatalyst with high visible light photocatalytic activity was synthesized through the hydrolysis and condensation of titanium isopropoxide with thiourea and iodic acid as the precursors. The as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-vis diffuse reflectance (DRS), X-ray photoelectron spectroscopy (XPS), Fourier translation infrared spectroscopy (FT-IR), and N2 adsorption. The results showed that the cations of S6+ and I5+ could substitute for some of the lattice titanium (Ti4+). The S,I-codoping forms the new bands above the valence band and narrows the band-gap of the TiO2, then shifts the absorption edge from UV light region to visible light range. The activity of the catalyst was examined by photodegradation of methylene blue in an aqueous solution under visible light irradiation. The activity of the S,I-codoped catalyst is far superior to that of single S or I-doped TiO2 counterpart. The high visible light photocatalytic activity could be attributed to the strong absorption of light, well-crystalline anatase phase, and mesoporous microstructure.  相似文献   

7.
High crystallinity mesoporous TiO2 hollow spheres (MHS-TiO2) were prepared using the mesoporous carbon hollow sphere template. The MHS-TiO2 contains mainly nanostructured anatase. The mesopore of the MHS-TiO2 has a pore opening in the range of 400–600 nm. The refined extended X-ray absorption fine structure spectra indicate that the MHS-TiO2 possesses less the 1st-shell Ti–O coordination numbers than the nano-TiO2. More surface active species (A2 ((Ti=O)O4)) on the MHS-TiO2 are also observed by the component fitted X-ray absorption near edge structure spectroscopy. The MHS-TiO2 photoanode has a better DSSC conversion efficiency than the nano-TiO2 one by at least 40%. Note that the N3 dye molecules are accessible to the mesopores of the MHS-TiO2, and the loading time for N3 can be reduced by at least 70% if compared with those of the nano-TiO2.  相似文献   

8.
A series of nanocomposites of poly(3-hexylthiophene) with Fe N-doped TiO2 (P3HT/Fe N/TiO2) were synthesized by the chemical method in situ. The structure of the prepared composites was characterized using X-ray diffraction patterns (XRD), infrared spectroscopy (IR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Optical and electrochemical properties were determined using UV-vis spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. These tests indicated that P3HT/Fe N/TiO2 is a new p-n semiconductor. Two solar cells based on P3HT/Fe N/TiO2 were manufactured and studied.  相似文献   

9.
以钛酸四正丁酯和硝酸镧为原料, 以P123为模板剂,采用模板法合成了La掺杂型介孔TiO2光催化剂, 借助TGA-DSC、BET、XRD及UV-Vis等测试手段对样品进行了表征,并以苯酚为模型污染物考察了镧掺杂量对样品光催化活性的影响.结果表明: La掺杂介孔TiO2光催化剂孔径分布较均匀(~10 nm),比表面积可达165 m2/g.与纯介孔TiO2相比,经掺杂改性后的样品在紫外光区及可见光区的吸收显著增强,对光具有更高的利用率,La掺杂可显著提高介孔TiO2的光催化活性.  相似文献   

10.
Macroporous nanocrystalline (Sr,Pb)TiO3 solid solutions were prepared by a facile self-propagating combustion method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectrum (EDS) and X-ray photoelectron spectroscopy (XPS). (Sr,Pb)TiO3 solid solutions showed enhanced photocatalytic activity for the degradation of methyl orange (MO) than pure SrTiO3 and an optimum performance was observed for Sr29/32Pb3/32TiO3. The possible mechanism for the enhanced photocatalytic activity on (Sr,Pb)TiO3 solid solutions was proposed.  相似文献   

11.
N-doped TiO2/C3N4 composite samples were synthesized by heating the mixture of the hydrolysis product of TiCl4 and C3N4 at different weight ratios. The samples were characterized by X-ray diffraction (XRD), Raman spectrum, UV–vis absorption spectrum, photoluminescence spectrum, X-ray photon electron spectrum (XPS) and surface photovoltage spectrum (SPS). The XRD and Raman results indicate that the introduction of C3N4 could inhibit the formation of rutile TiO2. The composite samples show slight visible light absorption due to the introduction of C3N4. The XPS result reveals that some amount of nitrogen is doped into TiO2, and C3N4 exists in the composite sample. The intensities of the SPS signal in the composite samples decrease with the rise in the amount of C3N4 in the samples. The photocatalytic activity was evaluated from the Rhodamine B (RhB) degradation under fluorescence light irradiation. The composite samples show significantly enhanced photocatalytic activities and the RhB self-sensitized photodegradation in this system was observed by measuring the photocurrent in the dye sensitized solar cell using the composite as the working electrode.  相似文献   

12.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

13.
Sol-gel nanostructured titania materials have been reported to have applications in areas ranging from optics via solar energy to gas sensors. In order to enhance the photocatalytic activity, there are many studies regarding the doping of titanium dioxide (TiO2) material with either non-metals (S, C, N, P) or metals (Ag, Pt, Nd, Fe). The present work has studied some un-doped and Pd-doped sol-gel TiO2 materials (films and gels), with various surface morphologies and structures, obtained by simultaneous gelation of both precursors Ti(OEt)4 and Pd(acac)2. Their structural evaluation and crystallization behavior with thermal treatment were followed by DTA/TG analysis, infrared (IR) spectroscopy, Fourier transform infrared (FTIR), spectroellipsometry (SE), X-ray diffraction (XRD) and atomic force microscope (AFM). The influence of Pd on TiO2 crystallization for both supported and un-supported materials was studied (lattice parameters, crystallite sizes, internal microstrains). The changes in the optical properties of the TiO2-based vitreous materials were correlated with the changes of the structure. The hydrophilic properties of the films were also connected with their structure, composition and surface morphology.  相似文献   

14.
The mesoporous N, S-codoped TiO2(B) nanobelts are synthesized via hydrothermal synthesis and post-treatment, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption measurements (BET), X-ray photoelectron spectra (XPS), and UV-vis diffuse reflectance spectra (DRS). The results show that the prepared samples are mesoporous structured and exhibit stronger absorption in the visible light region with red shift in the absorption edge. The photocatalytic activity of N, S-codoped mesoporous TiO2(B) nanobelts is evaluated by the photocatalytic photodegradation of potassium ethyl xanthate (KEX) under visible light irradiation. It is found that the photocatalytic activity of the prepared samples increases with increasing the molar ratio of thiourea to Ti (R). At R = 3, the photocatalytic activity of the N, S-codoped TiO2(B) sample TBLTS-3 reaches a maximum value. With further increasing R, the photocatalytic activity of the sample decreases. The high photocatalytic activity of N, S-codoped TiO2(B) nanobelts can be attributed to the balance between strong absorption in visible light region and low recombination rate of electron/hole pairs.  相似文献   

15.
Ultralong mesoporous TiO2-B nanowires were synthesized via a hybrid hydrothermal-ion exchanging-thermal treatment using tetrabutyl titanate (TBOT) as a raw material. The phase transformations and porous structures of TiO2-B nanowires were characterized and studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption-desorption measurement. Mesoporous TiO2-B nanowires showed a length of several micrometers and diameter of about 25 nm. The porous structures of obtained TiO2-B nanowires were demonstrated by BJH pore distribution measurement. The wirelike morphologies and porous structures of monodisperse nanowires calcined at 600 °C showed little change, which indicated that such nanowires possessed high thermal stability. The formation mechanism of TiO2-B nanowires with mesoporous structures were also discussed based on our experimental results.  相似文献   

16.
TiO2 thin film synthesized by the RF sputtering method has been implanted by 120 keV Ag? ion with different doses (3?×?1014, 1?×?1015, 3?×?1015, 1?×?1016 and 3?×?1016 ions/cm2). Further, these were characterized by Rutherford back Scattering, XRD, X-ray photoelectron spectroscopy (XPS), UV–visible and fluorescence spectroscopy. Here we reported that after implantation, localized surface Plasmon resonance has been observed for the fluence 3?×?1016 ions/cm2, which was due to the formation of silver nanoparticles. Ag is in metallic form in the matrix of TiO2, which is very interestingly as oxidation of Ag was reported after implantation. Also, we have observed the interaction between nanoparticles of Ag and TiO2, which results in an increasing intensity in lower charge states (Ti3+) of Ti. This interaction is supported by XPS and fluorescence spectroscopy, which can help improve photo catalysis and antibacterial properties.  相似文献   

17.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

18.
In this work, hierarchically porous TiO2–B nanoflowers have been successfully synthesized via a facile solvothermal method followed by calcination treatment. The TiO2–B nanoflowers are constructed by thin nanosheets, presenting ultrahigh specific surface area, up to 214.6 m2 g−1. As anode materials for Li-ion batteries, the TiO2–B sample shows high reversible capacity, excellent cycling performance and superior rate capability. The specific capacity of TiO2–B could remain over 285 mA h g−1 at 1 C and 181 mA h g−1 at 10 C rate after 100 cycles. We believe that the pseudocapacitive mechanism, ultrahigh surface area and scrupulous nanoarchitecture of the TiO2–B are responsible for the enhancement of electrochemical properties.  相似文献   

19.
In this study, we report a simple and cost-effective method for in situ decoration of Ag NPs onto nanoporous TiO2 microrods by one medium (ethylene glycol) that can produce two different morphologies. In order to investigate the morphology, phase composition, crystalline structure, and chemical state (valency) of samples before and after annealing in air at different temperatures, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were performed. The present results show that the size, morphology and crystallinity of both Ag NPs and TiO2 microrod substrate depend on the post-annealing treatment temperatures. The annealed Ag–TiO2 NP/microrod composites show large inhibition zones against E. coli bacteria. The obtained Ag–TiO2 composites have the potential for use as a novel antibacterial material and in water treatment applications.  相似文献   

20.
Bimodal nanocrystalline mesoporous TiO2 powders with highly photocatalytic activity were prepared by a hydrothermal method using tetrabutylorthotitanate as precursor, and then dried in microwave oven. The prepared samples were characterized by XRD, SEM, TEM, HRTEM and N2 adsorption-desorption measurement. The photocatalytic activity was evaluated by the photocatalytic degradation of acetone in air under UV light irradiation at room temperature. The effects of microwave drying on the microstructures and photocatalytic activity of the TiO2 powders were investigated and discussed. The results show that microwave drying not only promotes the growth of the pores but also greatly reduces the state of agglomeration within the powders. All the microwave-dried TiO2 powders show higher photocatalytic activity than Degussa P-25 (P25) and the TiO2 powders dried by conventional method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号