首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metastable VO2 nanobelts, designated as VO2 (B), were successfully fabricated by a facile hydrothermal route in the presence of V2O5 and glucose. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), selected area electronic diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) techniques. The main synthesis parameters such as temperature, reaction time and molar ratio of the starting materials have been also discussed. The results showed that pure B phase VO2 nanobelts with high crystallinity can be prepared easily at 180 °C in 24 h at the molar ratio of V2O5:glucose=1:1. Typically, the belt-like products were 0.6-1.2 μm long, 80-150 nm wide and 20-30 nm thick. It is noted that the whole process is free of any harmful reducing reagents and surfactants, and valuable gluconic acid can be formed as the main by-product. From an economic and environmental point of view, the present approach is particularly fit for the synthesis of VO2 (B) nanobelts on a large scale.  相似文献   

2.
Without using inert gas to prevent the oxidation of Fe2+, Fe3O4 nanorods and nanowires have been successfully synthesized via a microwave-assisted ionic liquid method (MAIL). Compared to the traditional methods, the whole reaction process can be carried out more easily and faster. Our result shows that temperature and time of microwave heat played important roles in the formation of Fe3O4 with different morphologies. These products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and FT-IR spectra.  相似文献   

3.
Mixture of carbon black, copper and lead was used as catalyst of high-content RDX-composite-modified double base propellant. To enhance the catalytic effect and improve the flaring performance, metal oxide deposited on carbon nanotubes (CNTs) are replaced with afore-mentioned catalyst. A new type of nano-combustion catalyst is synthesized with microemulsion process. In present work, ternary diagram was adopted to analyze the essential factors which affect microemulsion, including temperature, surfactant or cosurfactant and concentration of solution in order to find the best technical parameters and thus to control the core formation and growth of oxides on the nano-template. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are applied to characterize the products. Through observation of microstructures and analysis of crystal structure, it is confirmed that nano-oxides are deposited on the surface of carbon nanotubes. Its particle size is below 50 nm. According to propellant components, a certain amount of combustion catalyst and RDX will be mixed. PbO·CuO/CNTs can catalyze thermal decomposition of RDX by thermal analysis. The results show that the new catalysts obviously accelerate the decomposition of RDX, and the peak temperature of decomposition reduce by 14.1 °C. The catalytic effect of nano-catalyst is better than original catalyst.  相似文献   

4.
TiO2 (anatase and rutile) nanoparticles with an average crystallite size of 20-40 nm have been prepared at room temperature by polyol-mediated synthesis technique in a semi-aqueous solvent medium using titanium iso-propoxide as the titanium source, acetone as the oil phase and ethylene glycol as the stabilizer. Phase and microstructure of the resultant materials have been characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photocatalytic degradation of acetaldehyde using TiO2 nanoparticles was investigated by gas-chromatography technique.  相似文献   

5.
Uniform cuprous oxides with different morphologies have been successfully synthesized using polyvinylpyrrolidone (PVP) as a capping agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectrophotometer, Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy were employed to characterize the structure and morphology of cuprous oxides. It was found that the reaction conditions such as PVP, reducing agent and complexing agent played important roles in the formation of regular cuprous oxide crystals. In addition, their antibacterial activity against Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) was also investigated by the Oxford cup method. Results suggested that cuprous oxides are selective in their antibacterial action. They display effective antibacterial activity against S. aureus, B. subtilis and P. aeruginosa. There is no bactericidal ability against E. coli in the tested concentration range, which indicates that E. coli may be a Cu(I)-tolerant bacterium.  相似文献   

6.
Flower-like Bi12TiO20 hierarchical nanostructures composed of numerous nanobelts were synthesized at 180 °C within 1 h by a microwave-assisted hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB) for the first time. The as-prepared products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet–visible (UV–vis) absorption spectroscopy. Furthermore, the hierarchical Bi12TiO20 nanostructures exhibited higher photocatalytic activities in the degradation of Rhodamine B under visible-light irradiation than that of the samples prepared without CTAB. In addition, the role of CTAB cationic surfactant has been investigated thoroughly and a possible mechanism is proposed.  相似文献   

7.
Colloidal ZnO nanoparticles were prepared in ethanol solutions and annealed at different temperatures (150-500 °C) subsequently. The size, morphology and surface characteristics of ZnO nanoparticles were examined by TEM, XRD, UV-vis absorption spectrum and FTIR technique. With the increase of annealing temperature, the mean size of ZnO nanoparticles was increased from 10 to 90 nm, while the bonding structure of acetate groups coordinating with zinc ions evolved from unidentate to bidentate type. The UV-induced degradation results of methyl orange verified that the photocatalytic process of colloidal ZnO nanoparticles without annealing and the sample annealed at 150 °C was unstable for the weakly bonding unidentate type of acetate groups. However, the sample annealed above 150 °C demonstrated their photocatalytic stability in the whole catalytic process for the stable bidentate bonding type of acetate groups. In addition, the change of particle size in the annealing process significantly affected the catalytic activity of photocatalysts. ZnO nanoparticles annealed at 300 °C would be a prospective photocatalysts with a high catalytic activity and stability compared with the other samples.  相似文献   

8.
Hydrothermal synthesis and characterization of nanocrystalline Zn-Mn spinel   总被引:1,自引:0,他引:1  
Hydrothermal method had been used to successfully synthesize the nanocrystalline spinel zinc manganese oxide (ZnMn2O4) directly from Zn(CH3COO)2·2H2O, NaOH, Mn(NO3)2 and H2O2 at 170 °C for the reaction time of 48 h. The effects of the synthesis conditions, such as the Zn/Mn molar ratio, the reaction temperature, the reaction time, the zinc source and the concentrations of NaOH and H2O2, on the formation of the Zn-Mn spinel were investigated. The products were characterized by means of X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicated that the compositions of the Zn-Mn spinel with the tetragonal structure were Zn1.14Mn1.86O4. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) images showed that the products at 170 °C were with square-shaped nanocrystalline spinel with the particle size of about 20-50 nm. The thermal behaviors of the products were investigated by thermogravimetric analysis (TG).  相似文献   

9.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

10.
In this study, we report synthesis of water-soluble gold nanoparticles (Au-NPs), having an average diameter of ca. ∼20 nm, using ciprofloxacin (CF) as a reducing/stabilizing agent. The synthesized Au-NPs have been characterized by scanning electron microscopy (SEM), EDX, TEM, UV-visible spectroscopy (UV-vis), X-ray diffraction and cyclic voltammetry. TEM and SEM combined with EDX analysis confirmed that spherical-shaped Au-NPs were formed. UV-vis spectra of the Au-NPs showed two absorption bands corresponding to the capping agent ciprofloxacin and surface plasmon absorption bands at 274 and 527 nm, respectively. The synthesized Au-NPs are used to modify a glassy carbon electrode (GCE) and its electrochemical and electrocatalytic properties are investigated. The Au-NPs modified electrode showed excellent electrocatalytic activity towards the oxidation of methanol at +0.33 V in alkaline solution, which was not observed on the unmodified GCE. Further, electrocatalytic reduction of oxygen was also studied using the Au-NPs modified electrode at lower potential. Here, CF was used as a reducing agent for the preparation of Au-NPs dispersion. This Au-NPs dispersion is highly stable, and can be stored for more than three months in air at room temperature.  相似文献   

11.
Copper oxide (CuO) nanoparticles with an average size of 25 nm were prepared by a sol-gel method. A detailed study was made of the magnetization of CuO nanoparticles using a maximum field of 60 kOe for temperatures between 8 and 300 K. Antiferromagnetic CuO nanoparticles exhibit anomalous magnetic properties, such as enhanced coercivity and magnetic moments. Significantly, the magnitude of the hysteresis component tends to weaken upon increase in temperature (>8 K). In addition, a hysteresis loop shift and coercivity enhancement are observed at 8 K in the field-cooled (FC, at 50 kOe) case. It is thought that the change in hysteresis behavior is due to the uncompensated surface spins of the CuO nanoparticles. The susceptibility (χ) plot showed that χ varied substantially at temperatures below 12 K, and this transition is due to the exchange interactions between the neighboring atoms at the nanoscale.  相似文献   

12.
Novel Bi2MoO6/BiPO4 composites with heterojunction structure were fabricated by a one-step hydrothermal method. The photocatalytic properties of Bi2MoO6/BiPO4 composites were evaluated by photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation (λ>420 nm). The results showed that Bi2MoO6/BiPO4 photocatalysts showed much higher photocatalytic activity for the Rh B degradation than the pure BiPO4 and Bi2MoO6 under visible light. The best photocatalytic performance of Bi2MoO6/BiPO4 with about 98.0% Rh B degradation located at molar ratio of 2:1 under visible light illumination for 30 min. The enhanced photocatalytic activity could be mainly ascribed to the formation of heterojunction interface in Bi2MoO6/BiPO4 composites, which is beneficial to the transfer and separation of photogenerated electron–hole pairs, as well as the strong visible light absorption resulting from the sensitization role of Bi2MoO6 to BiPO4. It was also observed that the photodegradation of Rh B is chiefly attributed to the oxidation action of the generated O2 radicals and the action of hvb+ through direct hole oxidation process.  相似文献   

13.
We report a facile synthesis of ZnO/Fe2O3 heterostructures based on the hydrolysis of FeCl3 in the presence of ZnO nanoparticles. The material structure, composition, and its optical properties have been examined by means of transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and diffuse reflectance UV–visible spectroscopy. Results obtained show that 2.9 nm-sized Fe2O3 nanoparticles produced assemble with ZnO to form ZnO/Fe2O3 heterostructures. We have evaluated the photodegradation performances of ZnO/Fe2O3 materials using salicylic acid under UV-light. ZnO/Fe2O3 heterostructures exhibited enhanced photocatalytic capabilities than commercial ZnO due to the effective electron/hole separation at the interfaces of ZnO/Fe2O3 allowing the enhanced hydroxyl and superoxide radicals production from the heterostructure.  相似文献   

14.
CeO2 nanostructures were successfully prepared by a facile and environmentally friendly mixed-solvothermal method under mild conditions. The X-ray diffraction (XRD) and transmission electron microscope (TEM) results indicated that the as-synthesized products were cubic CeO2 polycrystalline structures with uniform diameters in the range of 10–20 nm and lengths up to 80 nm. X-ray photoelectron spectroscopy (XPS) spectra and EDX data demonstrated that stoichiometric CeO2 was formed. A possible growth mechanism of the CeO2 nanostructures was proposed. Moreover, ultraviolet absorption measurement revealed the band gap of the CeO2 nanorods was estimated to be 3.85 eV, which is larger than the reported value for the bulk CeO2 (Eg=3.2 eV). Enhancement of the band gap of the CeO2 nanorods is attributed to the well-known quantum size effect.  相似文献   

15.
Nanoparticles of ZnO with the wurtzite structure have been successfully synthesized via a microwave through the decomposition of zinc acetate dihydrate in an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as a solvent. Fundamental characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were conducted for the ZnO nanostructures.To explore the growth mechanism, the samples have been prepared in different irradiation time and also cetyltrimethylammonium bromide (CTAB) has been used as the capping reagent.  相似文献   

16.
In this article, calcium nitrate (Ca(NO3)2) and disodium hydrogen phosphate (Na2HPO4) are used as calcium and phosphorous sources to prepare hydroxyapatite nanoparticles by the hydrothermal method. Plate-like nanocrystals of hydroxyapatite are synthesized with the aid of sodium tripolyphosphate. The results show that sodium tripolyphosphate increases the diameters of the hydroxyapatite nanoparticles during the hydrothermal process. When the concentration of sodium tripolyphosphate reaches 0.015 M, the average aspect ratio of those nanoparticles is close to 1. The strong surface adsorption caused by sodium tripolyphosphate may answer for the morphological change of hydroxyapatite crystal.  相似文献   

17.
Perovskite strontium stannate (SrSnO3) nanorods were prepared by annealing the precursor SnSr(OH)6 nanorods at 600 °C for 3 h. The precursor nanorods were hydrothermally synthesized at 160 °C for 16 h using Sr(NO3)2 and SnCl4·5H2O as starting materials in the presence of surfactant cetyltrimethyl ammonium bromide (CTAB). As-prepared samples were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and infrared ray spectroscopy (IR). The results show that the as-synthesized powders are made of SrSnO3 one-dimensional nanorods of about 0.2-1 μm length and 100-150 nm diameter. Possible formation mechanism of SrSnO3 with nanorod structure under certain conditions was preliminarily analyzed, in which it was thought that CTAB played an important role in the formation process of the nanorod structure. Electrochemical performance of the samples versus Li metal was also evaluated for possible use in lithium-ion batteries.  相似文献   

18.
In this study, we prepared trimanganese tetroxide nanoparticles from MnCl2 solution in an ammonia atmosphere using a new surfactant-free method at room temperature. We analyzed and characterized the effects of different processing conditions, such as the concentrations of manganese and the ammonia source, as well as the reaction time, on the structure, purity, and morphology of the products using powder X-ray diffraction (XRD), scanning electron microscopy, and Fourier transformation infrared spectroscopy (FTIR) techniques. The XRD and FTIR analyses confirmed that the prepared products comprised single phase Mn3O4. At room temperature, the paramagnetic characteristics were also verified by vibrating sample magnetometry. Furthermore, we tested the catalytic activity of the nanoparticles during the degradation of methyl orange and Congo red, which are organic pollutants. Our experiments demonstrated the rapid color removal and reduction in the chemical oxygen demand (>70% and >50% within 10 min, respectively) using aqueous solutions of azo dyes.  相似文献   

19.
Nitrogen-doped TiO2 (N-TiO2) nanoparticles have been successfully prepared via a direct and simple hydrothermal reaction of a commercial Degussa P25 with triethanol amine as solvent and nitrogen source. As-prepared N-TiO2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible light (UV-vis) absorption spectra, electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS) techniques. The results confirm that hydrothermal reaction is an effective way to incorporate nitrogen into the TiO2 lattice, especially nitrogen substitute for titanium. The nitrogen concentration in TiO2 can be as high as 21% (molar ratio), which is described as Ti1−yO2−xNx+y (in this paper, x=0.36, y=0.27, i.e., Ti0.73O1.64N0.63). The chemical statuses of N have been assigned to N-Ti-O and O-N-O in the TiO2 lattice as identified by XPS. Photocatalytic degradation of methyl orange has been carried out in both UV-vis (simulated solar light) and the visible region (λ>400 nm). N-TiO2 exhibits higher activity than the Degussa P25 TiO2 photocatalyst, particularly under visible-light irradiation. This study has developed a promising and practical pathway to new nitrogen-doped photocatalysts.  相似文献   

20.
Porous metal oxides with a large surface area are synthesised by means of a procedure based on the templating approach. An inexpensive porous silica xerogel synthesised at moderate temperatures (∼100 °C) in order to preserve the silanol superficial groups was used as template. In a first step, the silica porosity was filled with a concentrated solution containing a metallic salt. Then, the impregnated sample was calcined in air at a temperature of 600 °C. Under these conditions, the metal oxides were synthesised within the confined space provided by the silica pores. Finally, the product was recovered after dissolution of the silica framework in 2 M NaOH solution. The materials obtained by this procedure are made up of aggregates of nanoparticles and/or 3D solid structures containing confined pores. In this work, the synthetic route proposed is illustrated by the preparation of various binary metal oxides (i.e. Fe2O3, Cr2O3, NiO, CeO2, Mn2O3, Co2O3 and Al2O3). The BET surface areas measured for these materials are in the range of 100-270 m2 g−1. The proposed method is not restricted to the binary metal oxides. It can also be used in the preparation of other inorganic materials such as metal sulphides or mixed metal oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号