首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallization in the melt-quenched (MQ) and mechanically milled (MM) superionic systems has been thoroughly investigated using differential scanning calorimetry, X-ray diffraction and electrical conductivity measurements. It is observed that the two systems obey different crystallization processes. The conventionally melt-quenched samples exhibit only one crystallization peak near 112 °C, whereas, the mechanochemically synthesized samples show two well-separated crystallization peaks at Tcl∼75-97 °C and Tc2∼132±2 °C. The higher value of electrical conductivity in the mechanochemically synthesized samples (∼10−2 Ω−1 cm−1 at 300 K) than the melt-quenched samples is attributed to the higher value of disorder (entropy) in the former.  相似文献   

2.
A procedure has been developed for analyzing the evolution with time of the actual volume fraction transformed, for calculating the kinetic parameters and for analyzing the glass-crystal transformation mechanisms in solid systems involving formation and growth of nuclei. By defining an extended volume of transformed material and assuming spatially random transformed regions, a general expression of the extended volume fraction has been obtained as a function of the temperature. Considering the mutual interference of regions growing from separate nuclei (impingement effect) and from the above-mentioned expression, the actual volume fraction transformed has been deduced. The kinetic parameters have been obtained, assuming that the reaction rate constant is a time function through its Arrhenian temperature dependence. The theoretical method developed has been applied to the crystallization kinetics of a set semiconducting alloys, prepared in our laboratory, corresponding to the Sb-As-Se and Ge-Sb-Se glassy systems. The obtained values for the kinetic parameters agree satisfactorily with the calculated results by the Austin-Rickett kinetic equation, under non-isothermal regime. This fact allows to check the validity of the theoretical model developed.  相似文献   

3.
The heat capacity of nickel ferrite was measured as a function of temperature from 50 to 1200 °C using a differential scanning calorimeter. A thermal anomaly was observed at 584.9 °C, the expected Curie temperature, TC. The observed behavior was interpreted by recognizing the sum of three contributions: (1) lattice (vibrational), (2) a spin wave (magnetic) component and (3) a λ-transition (antiferromagnetic-paramagnetic transition) at the Curie temperature. The first was modeled using vibrational frequencies derived from an experimentally-based IR absorption spectrum, while the second was modeled using a spin wave analysis that provided a T3/2 dependency in the low-temperature limit, but incorporated an exchange interaction between cation spins in the octahedral and tetrahedral sites at elevated temperatures, as first suggested by Grimes [15]. The λ-transition was fitted to an Inden-type model which consisted of two truncated power law series in dimensionless temperature (T/TC). Exponential equality (m=n=7) was observed below and above TC, indicating symmetry about the Curie temperature. Application of the methodology to existing heat capacity data for other transition metal ferrites (AFe2O4, A=Fe, Co) revealed nearly the same exponential equality, i.e., m=n=5.  相似文献   

4.
The glass-forming ability and devitrification of alloys in the Sb-As-Se system have been studied by differential scanning calorimetry (DSC). A comparison of various simple quantitative methods to assess the level of stability of glassy materials in the above-mentioned system is presented. All these methods are based on the characteristic temperatures, obtained by heating of the samples in non-isothermal regime, such as the glass transition temperature, Tg, the temperature at which crystallization begins, Tin, the temperature corresponding to the maximum crystallization rate, Tp, or the melting temperature, Tm. In this work, a kinetic parameter Kr(T) is added to the stability criteria. The thermal stability of some ternary compounds of SbxAs0.60−(2x+y)Se0.40+x+y-type has been evaluated experimentally and correlated with the activation energies of crystallization by this kinetic criterion and compared with those evaluated by other criteria.  相似文献   

5.
C60 and C70 fullerenes polymerized under pressures between 9.5 and 13 GPa and temperatures between 670 and 1850 K were investigated by differential scanning calorimetry (DSC) in the range 240-640 K. Endothermal heat effects were observed with a peak maximum just below 540 K, a temperature characteristic for breakdown of (2+2) intermolecular links in dimers, 1D and 2D polymers. Exothermal effects, starting from 380 K, were observed for the first time in polymeric fullerenes. These effects are attributed to relaxation processes and to breakdown of other types of intermolecular bonds such as common four-sided rings and (3+3) interlinks.  相似文献   

6.
New glasses have been synthesized in a multicomponent system based on indium fluoride. Samples of a few mm in thickness were obtained. They are transparent and homogeneous. Main physical properties such as density, characteristic temperatures, density, thermal expansion and refractive index have been measured. The evolution versus composition is reported for samples with the formula: (35−x) InF3-xGaF3-10YF3-25PbF2-15CaF2-15ZnF2. Tg lies between 260 and 296 °C while melting starts around 480 °C. Glass samples are stable at room temperature. By comparison with other standard fluoride glasses, they exhibit higher refractive index and density.  相似文献   

7.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

8.
An integral fitting method has been developed to determine the phase transformation mechanism and to extract the kinetic parameters during the crystallization of amorphous alloys. The proper kinetic function of the phase transformation was firstly deduced. Theoretical differential scanning calorimetry curves were then calculated. All the kinetic parameters can be extracted by fitting the calculated differential scanning calorimetry curves to experimental data. We applied the integral fitting method to analyze the isochronal crystallization of the Ti50Cu42Ni8 amorphous alloy. Results indicate that a transformation process considering impingement is more suitable to describe the crystallization kinetics of this alloy than using the traditional Johnson-Mehl-Avrami model. Mean values of the obtained kinetic parameters show strong heating rate dependence.  相似文献   

9.
Optical observation under the polarizing microscope and DSC measurements on K3H(SeO4)2 single crystal have been carried out in the temperature range 25-200 °C. It reveals a high-temperature structural phase transition at around 110 °C. The crystal system transformed from monoclinic to trigonal. Electrical impedance measurements of K3H(SeO4)2 were performed as a function of both temperature and frequency. The electrical conduction and dielectric relaxation have been studied. The temperature dependence of electrical conductivity indicates that the sample crystal became a fast ionic conductor in the high-temperature phase. The frequency dependence of conductivity follows the Jonscher's universal dynamic law with the relation σ(ω)=σ(0)+n, where ω is the frequency of the AC field, and n is the exponent. The obtained n values decrease from 1.2 to 0.1 from the room temperature phase to fast ionic phase. The high ionic conductivity in the high-temperature phase is explained by the dynamical disordering of protons between the neighboring SeO4 groups, which provide more vacant sites in the crystal.  相似文献   

10.
Raman spectra of the 0.1Nb2O5-0.9TeO2 binary glass-forming oxide system were measured over a temperature range including the glassy, supercooled and crystalline state to reveal the structural changes caused by temperature variation. The analysis of the reduced Raman spectra made it possible to quantitatively follow the transformation of the TeO4 trigonal bipyramids—that dominate in the low temperature glass—into TeO3 trigonal pyramids with temperature rise. Based on the predictions of existing structural models, we estimated with the aid of the Raman data the number of terminal oxygen atoms that inevitably accompany this structural change. The various crystal phases of the system studied in this work and the routes for converting one crystal phase into another were also examined. Finally, the low-energy excitations of the non-crystalline states of 0.1Nb2O5-0.9TeO2 were studied by following the temperature dependence of the Boson peak.  相似文献   

11.
The ternary MoO3-La2O3-B2O3 glasses containing a large amount of MoO3 (10-50 mol%) are prepared, and their structure and crystallization behavior are examined from the Raman scattering spectrum measurements and X-ray diffraction analyses. It is found that the glass transition and crystallization temperatures and the thermal stability against crystallization decrease with increasing MoO3 content. It is suggested that the main coordination state of Mo6+ ions in the glasses is isolated (MoO4)2− tetrahedral units giving strong Raman bands at 830-860 and 930 cm−1. It is found that the crystalline phases in the crystallized glasses are mainly LaMoBO6 and LaB3O6, and the main crystallization mechanism in MoO3-La2O3-B2O3 glasses is surface crystallization. LaMoBO6 crystals are found to give strong Raman bands at 810-830 and ∼910 cm−1.  相似文献   

12.
Li2O-Nb2O5-ZrO2-SiO2 glasses mixed with different concentrations of V2O5 were crystallized. The samples were characterized by XRD, SEM and DTA techniques. The SEM pictures indicated that the samples contain well defined and randomly distributed crystal grains. The X-ray diffraction studies have revealed the presence of several crystalline phases in these samples. Optical absorption, ESR and photoluminescence spectral studies on these samples have indicated that a considerable proportion of vanadium ions do exist in V4+ state in addition to V5+ state and the redox ratio seems to be increasing with increase in the concentration of crystallizing agent V2O5. The infrared spectral studies have pointed out the existence of conventional SiO4, ZrO4, NbO6, VO structural units in the glass ceramic network. The study of dielectric properties suggested a decrease in the insulating character of the glass ceramics with increase in the crystallizing agent. A.C. conductivity in the high temperature region seems to be connected mainly with the polarons involved in the process of transfer from V4+↔V5+ ions.  相似文献   

13.
The glass-forming regions of the GeSe2-CdI2-TeO2 (I), GeSe2-CdI2-Bi2O3 (II) and GeSe2-TeO2-Bi2O3 (III) systems have been determined. The obtained glassy phases have been characterized by their basic physicochemical parameters such as temperatures of glass transition, crystallization, and melting, density and microhardness. The phase T-X diagram of the GeSe2-CdI2 system, which is the basic joint line for systems I and II, has been specified. Three non-variant equilibria (two eutectic and one syntectic) have been observed at temperatures 350, 280 and 375 °C for compositions containing 15, 95 and 33.3 mol% GeSe2, respectively. A new intermediate phase with probable composition of 2CdI2·GeSe2 has been formed.  相似文献   

14.
The corrosion behavior of Cu95−xZrxAl5 (x=40, 42.5 and 45 at.%) in 1 N HCl, 3 mass% NaCl and 1 N H2SO4 solutions was studied. As Zr content increases, the corrosion resistance is slightly enhanced. In order to improve the corrosion resistance of the Cu-Zr-Al glassy alloy, Nb was selected to substitute Cu. Although the supercooled liquid region ΔTx of the Cu-Zr-Al glassy alloys decreases with increasing Nb content, the alloys still retain high glass-forming ability and bulk glassy samples with 1.5 mm diameter can be obtained when up to 5 at.% Nb was added. It is found that the addition of Nb results in improvement of the corrosion resistance of the glassy Cu-Zr-Al alloys.  相似文献   

15.
The effect of heat treatment on the optical and electrical properties of Ge15Sb10Se75 and Ge25Sb10Se65 thin films in the range of annealing temperature 373-723 K has been investigated. Analysis of the optical absorption data indicates that Tauc's relation for the allowed non-direct transition successfully describes the optical processes in these films. The optical band gap (Egopt.) as well as the activation energy for the electrical conduction (ΔE) increase with the increase of annealing temperature (Ta) up to the glass transition temperature (Tg). Then a remarkable decrease in both the Egopt. and ΔE values occurred with a further increase of the annealing temperature (Ta>Tg). The obtained results were explained in terms of the Mott and Davis model for amorphous materials and amorphous to crystalline structure transformations. Furthermore, the deduced value of Egopt. for the Ge25Sb10Se65 thin film is higher than that observed for the Ge15Sb10Se75 thin film. This behavior was discussed on the basis of the chemical ordered network model (CONM) and the average value for the overall mean bond energy 〈E〉 of the amorphous system GexSb10Se90−x with x=15 and 25 at%. The annealing process at Ta>Tg results in the formation of some crystalline phases GeSe, GeSe2 and Sb2Se3 as revealed in XRD patterns, which confirms our discussion of the obtained results.  相似文献   

16.
The orientational disorder that is a feature of the crystalline pentachloronitrobenzene above ∼−82 °C, can be frozen by cooling to produce an orientational glass. The number of degrees of freedom frozen on cooling, or released on heating, in this orientational glass transition is low, so that the heat capacity change associated with this transition is expected to be small. In the present work, we show that the calorimetric signature of this orientational glass transition is in fact very weak. Conversely, since the molecular motions associated with this relaxation drag strong dipoles, the technique of thermally stimulated depolarisation currents (TSDC) provides a very strong signature of this transition. The orientational glass transition in pentachloronitrobenzene was studied by TSDC and, from this study, it was shown that this orientational glass belongs to the class of very strong glasses in the fragility scale proposed by Angell.  相似文献   

17.
The crystal and magnetic properties of the Nd1−xGdxCo4B compounds for 0?x?1 have been studied by X-ray powder diffraction, magnetization and differential scanning calorimetry (DSC) measurements. These compounds crystallize in a hexagonal CeCo4B-type structure with the P6/mmm space group. The substitution of Gd for Nd leads to a decrease of the unit-cell parameter a and the unit-cell volume V, while the unit-cell parameter c remains almost constant. Magnetic measurements indicate that all samples are ordered magnetically below room temperature. The Curie temperatures determined by the DSC technique increase linearly as Nd is substituted by Gd. The saturation magnetization at 5 K decreases upon the Gd substitution up to x=0.6, and then increases again.  相似文献   

18.
Solid polymer electrolytes have attracted considerable attention due to their wide variety of electrochemical device applications. The present paper is focused on the effect of plasticizer to study the structural, electrical and dielectric properties of PVA-H3PO4 complex polymer electrolytes. XRD results show that the crystallinity decreases due to addition of plasticizer up to particular amount of polyethylene glycol (PEG) and thereafter it increases. Consequently, there is an enhancement in the amorphicity of the samples responsible for process of ion transport. This characteristic behavior can be verified by the analysis of the differential scanning calorimetry results. FTIR spectroscopy has been used to characterize the structure of polymer and confirms the complexation of plasticizer with host polymeric matrix. Electrical and dielectric properties have been studied for different wt% of plasticizer and their variations have been observed. The addition of PEG has significantly improved the ionic conductivity. The optimum ionic conductivity value of the plasticized polymer electrolyte film of 30 wt% PEG has been achieved to be of the order of 10−4 S cm−1 at room temperature and corresponding ionic transference number is 0.98. The minimum activation energy is found to be 0.25 eV for optimum conductivity condition.  相似文献   

19.
20.
Binary tellurite (100−x)TeO2-xBaF2 glasses for different compositions of BaF2 (x=8, 10, 12, 15, 18 and 20 wt%) have been prepared by rapid quenching method. The velocities and attenuation during the propagation of the ultrasonic waves in all glasses were measured using a transducer operated at a fundamental frequency of 5 MHz at room temperature. A progressive increase in BaF2 content leads to a decrease in ultrasonic velocities and density, which is followed by an increase in attenuation. The existence of depolymerisation of Te co-ordination leads to the transformation of TeO4 trigonal bipyramid units through TeO3+1 polyhedron to TeO3 trigonal pyramid units. This is responsible for the observed decrease in the measured and determined parameters with the addition of the modifier content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号