首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In the present investigations, we have grown the nano-crystallites of Si by metal induced crystallization process. Layers of two different metals (Al and Au) were deposited on either side of Si using thermal evaporation technique to study metal induced crystallization. Annealing of such samples was carried out in the hot stage of TEM. We have found that the crystallization of amorphous silicon starts at 150 °C through the formation of metal silicides. Formation of metal silicides was observed through selected area diffraction. Nearly complete formation of nano crystallites of Si throughout the sample was observed at 200 °C. High-resolution TEM studies confirm the formation of nano-crystallites of Si all along the film.  相似文献   

2.
The structural modifications of an Si(111)- 7x7 reconstructed surface and the evolution of growth induced by Ga adsorption in the submonolayer regime at various substrate temperatures ranging from room temperature (RT) to 600 °C, with a low Ga flux rate of 0.1 ML/min (1 ML∼6.8×1014 atoms/cm2) have been studied in-situ in Ultra High Vacuum (UHV) using Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED) and Electron Energy Loss Spectroscopy (EELS) as characterization probes. Ga grows in the Stranski-Krastanov (SK) growth mode for temperatures ranging from RT to 350 °C, where 3D-islands form after one and two flat monolayers of Ga adsorption, while for higher temperatures ranging from 450 to 550 °C, Ga grows in the Volmer-Weber (VW) growth mode. A comprehensive 2D-phase diagram for this Ga/Si(111) system for adsorption, which provides pathways to attain the observed superstructural phases, viz., √3x√3-R30°, 6.3x6.3, 6.3√3x6.3√3-R30° and 11x11, has been investigated. The characteristic EELS spectrum for each superstructural phase is also reported in this study.  相似文献   

3.
《Surface science》1988,202(3):L587-L594
Transmission electron microscopy disclosed that cones formed on crystalline Si surfaces bombarded with a few keV Ar+ ions were of a dual structure inexplicable by the existing models of cone formation. The outer region of the cones was composed of unoriented crystallites of Si, whereas the inner region was a single crystal oriented in the 〈111〉 direction. The polycrystalline region was too thick to explain its formation in terms of ion-induced disordering of the monocrystalline phase, suggesting that the redeposition of sputtered Si atoms was deeply concerned in evolving the cones. It is supposed that the present cone evolution involved particle supply processes underlying the growth of Si whiskers from the vapor phase.  相似文献   

4.
Films of Bi2O3 were grown on glass substrate under atmospheric pressure by means of halide chemical vapour deposition (AP-HCVD) using BiI3 and O2 as the starting materials. In the XRD diffractogram of the film a strong diffraction peak appears at 27.91° assigned to the (111) diffraction of the δ-Bi2O3 with cubic structure. X-ray pole figure suggested that the 〈111〉 direction of the film is perpendicular to the substrate surface, while the 〈110〉 axis directs towards all directions parallel to the substrate surface. It is for the first that δ-Bi2O3 film was prepared on glass substrate.  相似文献   

5.
We report on the growth properties of InAs, InP and GaAs nanowires (NWs) on different lattice mismatched substrates, in particular, on Si(111), during Au‐assisted molecular beam epitaxy (MBE). We show that the critical diameter for the epitaxial growth of dislocation‐free III–V NWs decreases as the lattice mismatch increases and equals 24 nm for InAs NWs on Si(111), 39 nm for InP NWs on Si(111), 44 nm for InAs NWs on GaAs(111)B, and 110 nm for GaAs NWs on Si(111). When the diameters exceed these critical values, the NWs are dislocated or do not grow at all. The corresponding temperature domains for NW growth extend from 320 °C to 340 °C for InAs NWs on Si(111), 330 °C to 360 °C for InP NWs on Si(111), 370 °C to 420 °C for InAs NWs on GaAs(111)B and 380 °C to 540 °C for GaAs NWs on Si(111). Experimental values for critical diameters are compared to the previous findings and are discussed within the frame of a theoretical model. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Aluminium-induced crystallization of amorphous silicon (a-Si) in Al/Si and Si/Al bilayers was studied upon annealing at 250 °C by X-ray diffraction and Auger electron spectroscopy. The Al/a-Si bilayers and a-Si/Al bilayers were prepared by sputter deposition on single-crystal silicon wafers with a silicon-oxide film on top. During the isothermal annealing a layer-exchange process occurred in both types of bilayers. A continuous polycrystalline silicon (poly-Si) film was formed within, and thereby gradually replacing, the initial Al metal layer. The sublayer sequence in the original bilayer influenced the speed of the poly-Si formation and the layer-exchange process. After annealing, the Al fiber texture in the as-deposited bilayers had become stronger, the Al crystallites had grown laterally, and the macrostress in the Al layer had been released. The amorphous Si layer had crystallized into an aggregate of nanocrystals with {111} planes parallel to the surface, with a crystallite size of about 15–25 nm. An extensive analysis of the Gibbs energy change due to annealing showed that the layer exchange may be promoted by the release of elastic energy and grain growth for the Al phase. PACS 05.70.Jk; 61.43.Dq; 68.35.Rh; 61.72.Cc; 68.55.Jk  相似文献   

7.
The unique magnetic structure and property of intermetallic uranium compounds UGa3 have been investigated by neutron diffraction measurements. With applying pressure we succeeded in revealing the magnetic structure of UGa3. We suppose that the magnetic moment of UGa3 at low pressures is along the 〈011〉 direction and that at 2.2 GPa along the 〈111〉 direction. The Néel temperature and magnetic moment are reduced with applied pressure.  相似文献   

8.
We have studied the in situ HCl etching of Si active areas on patterned wafers. After some in situ HCl etching at 20 Torr of Si(1 0 0), we have locally obtained 2 μm long areas with misorientation angles around 4.5° towards 〈1 1 0〉. Furthermore, we have evidenced a recess shape transition from convex (T ≤ 865 °C) to concave (T ≥ 895 °C) as the etch temperature increases, with a nearly flat surface with no facets at T = 880 °C. The morphology of the etched structures at a given time, temperature and PHCl/PH2 ratio will be a function of the slope lengths and the pattern dimensions. Different kinds of surfaces (rounded areas, facets) were obtained in 3.5 μm × 3.5 μm Si windows after HCl etching at 850 °C during 300 s, depending on the stress within. Thermal oxidations can indeed be used to increase by 65 MPa up to 110 MPa the compressive stress in those Si windows which are bordered by SiO2 shallow trench isolation. An increase of the misorientation angle from 4.5° up to 6° occurred after the above-mentioned HCl etch when switching from conventional to highly strained Si windows. For the shortest etching times studied here (150 s), a selective etching of 3.5 μm × 3.5 μm Si windows edges is responsible for the misorientation. The etch is then more uniform. Stress gradients might consequently be one of the main misorientation causes. We have also probed the influence of the shallow trench isolation (STI) thickness on the misorientation. A morphological difference before HCl etching has been shown to be responsible for the transition from sloped to rounded areas. A local loading effect may prevail in this case.  相似文献   

9.
The magnetic properties and domain structure of epitaxial Co films grown on a modified Si(111) surface were studied. First, the processes of growth of copper silicide nanostructures on the Si(111) surface were investigated. Copper silicide clusters were formed on the Si(111)-5.55 × 5.55-Cu surface at a substrate temperature of ~550°C. It was established that the nanostructures formed have a perfect faceting, and the lateral edges and long wire side are oriented along the Si〈110〉 crystallographic directions. Then, Co films were deposited on the formed structures. The investigation of the coercive force and reduced remanent magnetization showed that the Co(111) films have the sixth-order crystalline anisotropy. It was found that the coercive force of the Co films deposited on the Cu buffer layer is approximately six times less than that of the Co films deposited on the Si(111)-5.55 × 5.55-Cu surface and Si(111)?5.55 × 5.55-Cu/(Cu-Si) cluster surface.  相似文献   

10.
This study investigated the dependence of surface blistering and exfoliation phenomena on post-annealing time in H+-implanted Si〈1 1 1〉. Czochralski-grown n-type Si〈1 1 1〉 wafers were room-temperature ion-implanted with 40 keV hydrogen monomers to a fluence of 5×1016 cm−2, and followed by furnace annealing treatments at 400 and 500 °C for various durations ranging from 0.25 to 3 h. The corresponding analysis results for Si〈1 0 0〉 [1] (Liang et al., 2008); [2] (Bai, 2007) were adopted in order to make comparisons. The evolution of blister formation and growth for Si〈1 1 1〉 at 400 °C has a shorter characteristic time compared to Si〈1 0 0〉. However, there is a longer characteristic time when annealing takes place at 500 °C. In addition, no craters were observed for Si〈1 1 1〉 annealed at 400 °C while the opposite is true for Si〈1 0 0〉. The evolution of crater development for Si〈1 1 1〉 annealed at 500 °C has a longer characteristic time compared to Si〈1 0 0〉. These results are attributed to the fact that compared to Si〈1 0 0〉, Si〈1 1 1〉 has a smaller surface binding energy of silicon atoms and a larger areal number density of silicon atoms on the plane perpendicular to the incident-ion axis. Furthermore, Si〈1 1 1〉 has a greater areal number density, smaller diameter, and a similar covered-area fraction of optically-detectable blisters compared to Si〈1 0 0〉. However, Si〈1 1 1〉 has a lower areal number density and a smaller covered-area fraction of craters than does Si〈1 0 0〉. Increasing post-annealing temperature from low (e.g. 400 °C) to high (e.g. 500 °C) revealed that Si〈1 1 1〉 tends to create more blisters while Si〈1 0 0〉 tends to develop larger blisters as well as create more craters.  相似文献   

11.
Two types of nanoridge domains oriented with each other with an angle ranging between 109° and 124° were measured by scanning tunneling microscopy on the α-W film sputter deposited on an oxidized Si surface. Each domain contains nanoridges with a period of 7.5 ± 1.0 nm. No such domains were observed on the β-W film surface. We argued that due to the anisotropy of the W(1 1 0) surface, the impinging W atoms diffuse faster along the 〈111〉 directions on the surface to form the nanoridge structure. There are two equivalent 〈111〉 directions, which give rise to two orientational domains with an angle of ∼110°. An isotropic β-W(1 0 0) phase has no preferred diffusion direction for the impinging W atoms and therefore, no nanoridge domain structure was observed.  相似文献   

12.
Phosphorus- and boron-doped hydrogenated amorphous silicon thin films were prepared by the plasma-enhanced chemical vapor deposition method. As-deposited samples were thermally annealed at various temperatures to get nanocrystalline Si with sizes around 10 nm. X-ray photoelectron spectroscopy measurements demonstrated the presence of boron and phosphorus in the doped films. It is found that the nanocrystallization occurs at around 600 °C for the B-doped films, while it is around 700-800 °C for the P-doped samples. For the P-doped samples, the dark conductivity decreases at first and then increases with the annealing temperature. While for the B-doped samples, the dark conductivity monotonously increases with increasing annealing temperature. As a result, the carrier transport properties of both P- and B-doped nanocrystalline Si films are dominated by the gradual activation of dopants in the films. The conductivity reaches 22.4 and 193 S cm−1 for P- and B-doped sample after 1000 °C annealing.  相似文献   

13.
The method of etching dislocations is used to study the distribution of dislocations and twins in Fe-3% Si alloy single crystals prepared from the melt after plastic deformation with higher speed. The crystals are deformed by twinning in the 〈111〉 directions along the {112} planes and by slip in the 〈111〉 directions along the {110} planes. The results prove that the dislocations causing plastic deformation move in the {110} planes during both fast and slow deformation. The difference in the slip surfaces during fast and slow deformation is explained by the different number of cross slips per unit dislocation path.  相似文献   

14.
Aluminium-induced crystallization of amorphous silicon (a-Si) in Al/a-Si and a-Si/Al bilayers was studied upon annealing at low temperatures between 165 and 250 °C, by X-ray diffraction (XRD) and Auger electron spectroscopy (AES). Upon annealing the inward diffusion of Si along grain boundaries in Al takes place, followed by crystallization of this diffused Si. Continuous annealing leads to (more or less) layer exchange in both types of bilayers. The change in bulk energy of the Al phase (release of macrostress and microstrain, increase of grain size) promotes the occurrence of layer exchange, whereas changes in surface and interface energies counteract the layer exchange.  相似文献   

15.
本文观察了在Si(100)和Si(111)衬底上分子束外延Si,Ge时的反射式高能电子衍射(RHEED)强度振荡现象。其振荡特性表明,外延一定厚度的缓冲层可以改善表面的平整性,较慢的生长速率或中断生长一段时间有利于外延膜晶体质量的提高。Si(100)上外延Si或Ge时,沿[100]和[110]方位观测到的振荡特性均为单原子模式,起因于表面存在双畴(2×1)再构;而Si(111)上外延Ge时,[112]方位观测到的振荡为双原子层模式,但在[110]方位观察到不均匀周期的强度振荡行为。两种衬底上保持RHEED  相似文献   

16.
A modified thermal evaporation processing is reported to fabricate silicon nanowires starting from Si powder under normal pressure. In a temperature range of 1250–1290 °C, long single-crystal Si nanowires with an amorphous layer were grown in relative large quantity, and they had a millimeter-scale length and a uniform diameter of about 100 nm. A high-resolution transmission electron microscopy image indicated that the growing direction of the long Si nanowires is [111]. PACS 81.07.Bc  相似文献   

17.
The preferential attachment of Si atoms at misorientation steps on vicinal GaAs(001) surfaces has been studied by RHEED. By analysing the time evolution of the specular beam intensity and the change in surface reconstruction during Si deposition we show that a self-organized Si incorporation along the step edges takes place. The observed (3×2) structure is due to an ordered array of dimerized Si atoms with missing dimer rows. Taking into account the structure of the (3×2) unit mesh and its orientation with respect to the As-terminated or Ga-terminated steps, a characteristic minimum in the RHEED intensity recording corresponds to the number of Ga step-edge sites. Since the preferential path for Ga as well as for Si adatom diffusion is along the [110] direction, the critical terrace width for wirelike Si attachment is much larger for a misorientation toward (111)As than for a misorientation toward (111)Ga. Despite the high local impurity concentration, the Si-modified surface can be overgrown with GaAs without adverse effects on the growth front. This is promising for the fabrication of doping wires.  相似文献   

18.
A Ti-rich oxide, (Ti0.50Zr0.26Mg0.14Cr0.10)∑=1.0O1.81, was synthesized at 8.8 GPa and 1600 °C using a multi-anvil apparatus. Its crystal structure at ambient conditions and compressibility up to 10.58 GPa were determined with single-crystal X-ray diffraction. This high-pressure phase is isomorphous with cubic zirconia (fluorite-type) with space group Fm3¯m and unit-cell parameters a=4.8830(5) Å and V=116.43(4) Å3. Like stabilized cubic zirconia, the structure of (Ti0.50Zr0.26Mg0.14Cr0.10)O1.81 is also relaxed, with all O atoms displaced from the (, , ) position along 〈1 0 0〉 by 0.319 Å and all cations from the (0, 0, 0) position along 〈1 1 1〉 by 0.203 Å. No phase transformation was detected within the experimental pressure range. Fitting the high-pressure data (V vs. P) to a third-order Birch-Murnaghan EOS yields K0=164(4) GPa, K′=4.3(7), and V0=116.38(3) Å3. The bulk modulus of (Ti0.50Zr0.26Mg0.14Cr0.10)O1.81 is significantly lower than that (202 GPa) determined experimentally for cubic TiO2 or that (~210 GPa) estimated for cubic ZrO2. This study demonstrates that cubic TiO2 may also be obtained by introducing various dopants, similar to the way cubic zirconia is stabilized below 2370 °C. Furthermore, (Ti0.50Zr0.26Mg0.14Cr0.10)O1.81 has the greatest ratio of Ti4+ content vs. vacant O2− sites of all doped cubic zirconia samples reported thus far, making it a more promising candidate for the development of electrolytes in solid oxide fuel cells.  相似文献   

19.
采用金属有机化学气相沉积(MOCVD)技术在Si(111)衬底上外延GaN薄膜,对高温AlN(HT-AlN)缓冲层在小范围内低生长压力(6.7~16.6 kPa)条件下对GaN薄膜特性的影响进行了研究。研究结果表明GaN外延层的表面形貌、结构和光学性质对HT-AlN缓冲层的生长压力有很强的的依赖关系。增加HT-AlN缓冲层的生长压力,GaN薄膜的光学和形貌特性均有明显改善,当HT-AlN缓冲层的生长压力为13.3 kPa时,得到无裂纹的GaN薄膜,其(002)和(102)面的X射线衍射峰值半高宽分别为735 arcsec和778 arcsec,由拉曼光谱计算得到的张应力为0.437 GPa,原子力显微镜(AFM)观测到表面粗糙度为1.57 nm。  相似文献   

20.
Thin nano-structured carbon films have been deposited in vacuum by pulsed laser ablation, from a rotating polycrystalline graphite target, on Si 〈1 0 0〉 substrates, kept at temperatures ranging from RT to 800 °C. The laser ablation was performed by a Nd:YAG laser, operating in the near IR (λ = 1064 nm).X-ray diffraction analysis, performed at grazing incidence angle, both in-plane (ip-gid) and out-of-plane (op-gid), has shown the growth of oriented nano-sized graphene particles, characterised by high inter-planar stacking distance (d? ∼ 0.39 nm), compared to graphite. The film structure and texturing are strongly related both to laser wavelength and substrate temperature: the low energy associated to the IR laser radiation (1.17 eV) generates activated carbon species of large dimensions that, also at low T (∼400 °C), easy evolve toward more stable sp2 aromatic bonds, in the plume direction. Increasing temperature the nano-structure formation increases, causing a further aggregation of aromatic planes, voids formation, and a related density (by X-ray reflectivity) drop to very low values. SEM and STM show for these samples a strongly increased macroscopic roughness. The whole process, mainly at higher temperatures, is characterised by a fast kinetic mode, far from equilibrium and without any structural or spatial rearrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号