首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of BaZr(PO4)2 at 298 K was determined from conventional X-ray powder diffraction data using direct methods, and it was further refined by the Rietveld method. The structure was monoclinic (space group C2/m, Z=2) with , , , β=93.086(1)° and . Final reliability indices were Rwp=8.21%, Rp=5.64% and RB=2.92%. The atom arrangement is similar to that of yavapaiite (KFe(SO4)2), however, these crystal structures differ distinctly in the coordination numbers of barium and potassium atoms; the former is tenfold coordinated, whereas the latter is sixfold coordinated. The powder specimens were also examined by high-temperature XRD and DTA to reveal the occurrence of a phase transition from monoclinic to orthorhombic at 732 K during heating. Upon cooling the reverse transition occurred at 710 K. The monoclinic crystal expanded almost one-dimensionally along [503] during the heating process. The orthorhombic phase also showed a tendency to expand one-dimensionally along the c-axis above 732 K.  相似文献   

2.
Zr2(MoO4)(PO4)2 is orthorhombic (Sc2W3O12 structure) from 9 to at least 400 K, and shows anisotropic volume negative thermal expansion (αa=−8.35(4)×10−6 K−1; αb=3.25(3)×10−6 K−1; αc=−8.27(5)×10−6 K−1 in the range 122-400 K) similar in magnitude to A2M3O12 (M—Mo or W) with large A3+. The contraction on heating is associated with a pattern of Zr-O-Mo/P bond angle changes that is somewhat similar, but not the same as that for Sc2W3O12. On heating, the most pronounced reductions in the separation between the crystallographic positions of neighboring Zr and P are not associated with significant reductions in the corresponding Zr-O-P crystallographic bond angles, in contrast to what was seen for Sc2W3O12.  相似文献   

3.
The crystal structure of β-BaZr(PO4)2, archetype of the high-temperature forms of BaM(PO4)2 phosphates (with M=Ti, Zr, Hf and Sn), has been solved ab initio by Rietveld analysis from synchrotron X-ray powder diffraction data. The phase transition appears as a topotactic modification of the monoclinic (S.G. C2/m) lamellar α-structure into a trigonal one (S.G. ) through a simple mechanism involving the unfolding of the layers. The thermal expansion is very anisotropic (e.g., −4.1<αi<34.0×10−6 K−1 in the case of α-BaZr(PO4)2) and quite different in the two forms, as a consequence of symmetry. It stems from a complex combination of several mechanisms, involving bridging oxygen rocking in M-O-P linkages, and “bond thermal expansion”.  相似文献   

4.
The crystal structure of SrZr(PO4)2 at 298 K was determined from conventional X-ray powder diffraction data using direct methods, and it was further refined by the Rietveld method. The structure was triclinic (space group , Z=2) with a=0.77508(4) nm, b=0.78887(5) nm, c=0.51251(3) nm, α=95.754(3)°, β=90.228(2)°, γ=92.474(2)°, and V=0.31149(3) nm3. Final reliability indices were Rwp=8.51%, Rp=6.07%, and RB=2.46%. The powder specimens were also examined by high-temperature XRD and differential thermal analysis to reveal the occurrence of phase transitions from triclinic to monoclinic at 405 K, then to hexagonal (or trigonal) at 1196 K during heating. Upon cooling, the reverse change of the latter transition occurred at 1175 K. The subsequent monoclinic-to-triclinic transition was martensitic and incomplete during further cooling to 298 K. The monoclinic phase is most probably isostructural with yavapaiite. The present paper has described, for the first time, the higher- and lower-temperature polymorphs of the yavapaiite-type structure.  相似文献   

5.
A complete series of solid solutions was prepared in the SrZr(PO4)2-BaZr(PO4)2 system and examined by conventional X-ray powder diffraction (XRPD). The crystals of SrxBa1−xZr(PO4)2 with x?0.1 were isomorphous with yavapaiite (KFe(SO4)2, space group C2/m). The solid solution with 0.2?x?0.7 has been composed of a new phase, showing a superstructure along the a-axis (c-axis of the yavapaiite substructure). The crystals with 0.8?x?0.9 were composed of both the new phase and the triclinic phase, the latter being isostructural with SrZr(PO4)2 (x=1). The crystal structure of the new phase has been determined using direct methods, and it has been further refined by the Rietveld method. The crystal of Sr0.7Ba0.3Zr(PO4)2 (x=0.7) is monoclinic (space group P2/c, Z=4 and Dx/Mg m−3=3.73) with a=1.53370(8) nm, b=0.52991(3) nm, c=0.84132(4) nm, β=92.278(1)° and V=0.68321(6) nm3. Final reliability indices are Rwp=7.32%, Rp=5.60% and RB=3.22%. The powder specimen was also examined by high-temperature XRPD and differential thermal analysis (DTA) to reveal the occurrence of two phase transitions during heating; the space group changed from P2/c to C2/m at ∼400 K, followed by the monoclinic-to-hexagonal (or trigonal) transition at 1060 K. The P2/c-to-C2/m transition has been, for the first time, described in the yavapaiite-type compounds.  相似文献   

6.
X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH2)3SnCl3. At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) Å, b=12.0958(4) Å and c=17.8049(6) Å, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) Å, b=8.8590(2) Å and c=8.0175(1) Å, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl3 part. The space group symmetry is maintained as Pnma, with a=12.1786(2) Å, b=8.8642(2) Å and c=8.0821(2) Å. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described.  相似文献   

7.
H. Naïli  W. Rekik  T. Bataille  T. Mhiri 《Polyhedron》2006,25(18):3543-3554
A new organically templated metal sulfate has been synthesized and characterized. At room temperature, dabcodiium hexaaquacopper(II) bis(sulfate), (C6H14N2)[Cu(H2O)6](SO4)2 crystallizes in the monoclinic symmetry (space group P21/n) with the following unit cell parameters: a = 6.9533(2), b = 12.5568(2), c = 9.9434(2) Å; β = 90.526(1)° and Z = 2. Its crystal structure is built from isolated [Cu(H2O)6]2+, and disordered ions linked together by a hydrogen-bonding network. The title compound undergoes a reversible phase transition of the first-order type at 265.7/281.8 K on heating–cooling runs. Below the phase transition temperature, the structure is fully ordered.  相似文献   

8.
A new dabcodiium-templated nickel sulphate, (C6H14N2)[Ni(H2O)6](SO4)2, has been synthesised and characterised by single-crystal X-ray diffraction at 20 and −173 °C, differential scanning calorimetry (DSC), thermogravimetry (TG) and temperature-dependent X-ray powder diffraction (TDXD). The high temperature phase crystallises in the monoclinic space group P21/n with the unit-cell parameters: a = 7.0000(1), b = 12.3342(2), c = 9.9940(2) Å; β = 90.661(1)°, V = 862.82(3) Å3 and Z = 2. The low temperature phase crystallises in the monoclinic space group P21/a with the unit-cell parameters: a = 12.0216(1), b = 12.3559(1), c = 12.2193(1) Å; β = 109.989(1)°, V = 1705.69(2) Å3 and Z = 4. The crystal structure of the HT-phase consists of Ni2+ cations octahedrally coordinated by six water molecules, sulphate tetrahedra and disordered dabcodiium cations linked together by hydrogen bonds. It undergoes a reversible phase transition (PT) of the second order at −53.7/−54.6 °C on heating-cooling runs. Below the PT temperature, the structure is fully ordered. The thermal decomposition of the precursor proceeds through three stages giving rise to the nickel oxide.  相似文献   

9.
The orthorhombic (α) low-cristobalite type AlPO4 and GaPO4 and their solid solutions are prepared by co-precipitation followed by high temperature annealing of the precipitate. The single phasic nature of the products is ascertained by powder XRD at room temperature. The high temperature behavior of these samples is studied by HT-XRD over the temperature range of 25-1000°C. All these compositions undergo an orthorhombic to cubic (β, high-cristobalite) phase transition at elevated temperature. The unit cell parameters at different temperatures are determined by refining the observed powder diffraction profiles. The phase transition is accompanied by a significant increase in the unit cell volume, leading to the formation of a low dense structure. The variation of unit cell volume with temperature for each composition shows that the orthorhombic phase has a significantly larger thermal expansion than the cubic (high temperature) phase. The high temperature behavior of all the compositions except the GaPO4 is similar. GaPO4 undergoes a phase separation to a more stable quartz type phase above 800°C. However, the quartz type phase again transforms to the high cristobalite (β) phase at 1000°C. Thermal expansions of all these phases are explained in term of the variation of M-O-P angle as a function of temperature.  相似文献   

10.
The single crystals of caesium magnesium titanium (IV) tri-oxo-tetrakis-diphosphate bis-monophosphate, Cs3.70Mg0.60Ti2.78(TiO)3(P2O7)4(PO4)2, crystallize in sp. gr. P-1 (No. 2) with cell parameters a=6.3245(4), b=9.5470(4), c=15.1892(9) Å, α=72.760(4), β=85.689(5), γ=73.717(4), z=1. The titled compound possesses a three-dimensional tunnel structure built by the corner-sharing of distorted [TiO6] octahedra, [Ti2O11] bioctahedra, [PO4] monophosphate and [P2O7] pyrophosphate groups. The Cs+ cations are located in the tunnels. The partial substitution of Ti positions with Mg atoms is observed. The negative charge of the framework is balanced by Cs cations and Mg atoms leading to pronounced concurrency and orientation disorder in the [P2O7] groups, which coordinate both.  相似文献   

11.
The thermal expansion of recently characterized α-Zr2O(PO4)2 and α-Hf2O(PO4)2 is found to be very low (respectively 2.6 and 2.9×10−6 K−1, 20-900  °C). High-temperature X-ray diffraction and Rietveld analysis allowed to identify a dual contraction mechanism, involving a classical ring deformation and the rocking of bridging oxygens.  相似文献   

12.
Phase equilibria in the systems Ag2MoO4-MMoO4 (M=Ca, Sr, Ba, Pb, Ni, Co, Mn) and subsolidus phase relations in the systems Ag2MoO4-MO-MoO3 (M=Ca, Pb, Cd, Mn, Co, Ni) were investigated using XRD and thermal analysis. The systems Ag2MoO4-MMoO4 (M=Ca, Sr, Ba, Pb, Ni) belong to the simple eutectic type whereas in the systems Ag2MoO4-MMoO4 (M=Co, Mn) incongruently melting Ag2M2(MoO4)3 (M=Co, Mn) were formed. In the ternary oxide systems studied no other compounds were found. Low-temperature LT-Ag2Mn2(MoO4)3 reversibly converts into the high-temperature form of a similar structure at 450-500°C. The single crystals of Ag2Co2(MoO4)3 and LT-Ag2Mn2(MoO4)3 were grown and their structures determined (space group , Z=2; lattice parameters are a=6.989(1) Å, b=8.738(2) Å, c=10.295(2) Å, α=107.67(2)°, β=105.28(2)°, γ=103.87(2)° and a=7.093(1) Å, b=8.878(2) Å, c=10.415(2) Å, α=106.86(2)°, β=105.84(2)°, γ=103.77(2)°, respectively) and refined to R(F)=0.0313 and 0.0368, respectively. The both compounds are isotypical to Ag2Zn2(MoO4)3 and contain mixed frameworks of MoO4 tetrahedra and pairs of M2+O6 octahedra sharing common edges. The Ag+ ions are disordered and located in the voids forming infinite channels running along the a direction. The peculiarities of the silver disorder in the structures of Ag2M2(MoO4)3 (M=Zn, Mg, Co, Mn) are discussed as well as their relations with analogous sodium-containing compounds of the structural family of Na2Mg5(MoO4)6. The phase transitions in Ag2M2(MoO4)3 (M=Mg, Mn) of distortive or order-disorder type are suggested to have superionic character.  相似文献   

13.
The crystal structures of 1,4-diazabicyclo[2.2.2]octane (dabco)-templated iron sulfate, (C6H14N2)[Fe(H2O)6](SO4)2, were determined at room temperature and at −173 °C from single-crystal X-ray diffraction. At 20 °C, it crystallises in the monoclinic symmetry, centrosymmetric space group P21/n, Z=2, a=7.964(5), b=9.100(5), c=12.065(5) Å, β=95.426(5)° and V=870.5(8) Å3. The structure consists of [Fe(H2O)6]2+ and disordered (C6H14N2)2+ cations and (SO4)2− anions connected together by an extensive three-dimensional H-bond network. The title compound undergoes a reversible phase transition of the first-order at −2.3 °C, characterized by DSC, dielectric measurement and optical observations, that suggests a relaxor–ferroelectric behavior. Below the transition temperature, the compound crystallizes in the monoclinic system, non-centrosymmetric space group Cc, with eight times the volume of the ambient phase: a=15.883(3), b=36.409(7), c=13.747(3) Å, β=120.2304(8)°, Z=16 and V=6868.7(2) Å3. The organic moiety is then fully ordered within a supramolecular structure. Thermodiffractometry and thermogravimetric analyses indicate that its decomposition proceeds through three stages giving rise to the iron oxide.  相似文献   

14.
Three new alkaline earth-zirconium oxalates M2Zr(C2O4)4·nH2O have been synthesized by precipitation methods for M=Ba, Sr, Ca. For each compound the crystal structure was determined from single crystals obtained by controlled diffusion of M2+ and Zr4+ ions through silica gel containing oxalic acid. Ba2Zr(C2O4)4·7H2O, monoclinic, space group C2/c, a=9.830(2), b=29.019(6), , , , Z=4, R=0.0427; Sr2Zr(C2O4)4·11H2O, tetragonal, space group I41/acd, a=16.139(4), , ,Z=8, R=0.0403; Ca2Zr(C2O4)4·5H2O, orthorhombic, space group Pna21, a=8.4181(5), b=15.8885(8), , , Z=4, R=0.0622. The structures of the three compounds consist of chains of edge-shared MO6(H2O)x (x=2 or 3) polyhedra connected to ZrO8 polyhedra through oxalate groups. Depending on the arrangement of chains, the ZrO8 polyhedron geometry (dodecahedron or square antiprism) and the connectivity, two types of three-dimensional frameworks are obtained. For the smallest M2+ cations (Sr2+, Ca2+), large tunnels are obtained, running down the c direction of the unit cell, which can accommodate zeolitic water molecules. For the largest Ba2+ cation, the second framework is formed and is closely related to that of Pb2Zr(C2O4)4·nH2O. The decomposition at 800°C into strontium carbonate, barium carbonate or calcium oxide and MZrO3 (M=Sr, Ba, Ca) perovskite is reported from thermal analyses studies and high temperature X-ray powder diffraction.  相似文献   

15.
Crystal structure and phase transformations of calcium yttrium orthophosphate Ca3Y(PO4)3 were investigated by X-ray powder diffraction, selected-area electron diffraction, transmission electron microscopy and optical microscopy. The high-temperature phase is isostructural with eulytite, cubic (space group ) with a=0.983320(5) nm, V=0.950790(8) nm3, Z=4 and Dx=3.45 Mg m−3. The crystal structure was refined with a split-atom model, in which the oxygen atoms are distributed over two partially occupied sites. Below the stable temperature range of eulytite, the crystal underwent a martensitic transformation, which is accompanied by the formation of platelike surface reliefs. The inverted crystal is triclinic (space group P1) with a=1.5726(1) nm, b=0.84267(9) nm, c=0.81244(8) nm, α=109.739(4)°, β=90.119(5)°, γ=89.908(7)°, V=1.0134(1) nm3, Z=4 and Dx=3.24 Mg m−3. The crystal grains were composed of pseudo-merohedral twins. The adjacent twin domains were related by the pseudo-symmetry mirror planes parallel to with the composition surface . When the eulytite was cooled relatively slowly from the stable temperature range, the decomposition reaction of Ca3Y(PO4)3β-Ca3(PO4)2+YPO4 occurred.  相似文献   

16.
Crystal structures of a series of bi-layered compounds ABi4Ti4O15 (A=Ca, Sr, Ba, Pb) have been investigated using a combination of synchrotron X-ray and neutron powder diffraction data. All four oxides adopt an orthorhombic structure at room temperature and the structures have been refined in space group A21am. This orthorhombic structure is a consequence of a combination of rotation of the TiO6, resulting from the less than optimal size of the A-type cation, and displacement of the Ti atoms towards the Bi2O2 layers. There is partial disorder of the Bi and A-type cations over two of the three available sites, which increases in the order Ca<Sr and Pb<Ba.  相似文献   

17.
Crystal structures of synthetic phosphates Ce0.33Zr2(PO4)3, Eu0.33Zr2(PO4)3 and Yb0.33Zr2(PO4)3 have been refined by Rietveld method using powder diffraction data. Unit cell parameters: a=8.7419 (4), c=23.128 (2) Å; a=8.7659 (1), c=22.822 (1) Å; a=8.8078 (4), c=22.485 (3) Å, respectively; Z=6. Values of final R-factors in isotropic approximation: Rwp=4.00, Rwp=3.33, Rwp=4.12%, respectively. New space group Pc has been established for the compounds with general formula Ln0.33Zr2(PO4)3, where Ln=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. It has been confirmed that the synthetic phosphates with general formula Ln0.33Zr2(PO4)3 belong to the NZP (sodium zirconium phosphate) structure type.  相似文献   

18.
Sterically hindered Lewis base free bis(1,2,4-tri-tert-butylcyclopentadienyl)strontium (1) and bis(1,2,4-tri-tert-butylcyclopentadienyl)barium (2) were synthesized using the common metathesis route and characterized with NMR, MS, TGA/SDTA and XRD. Compound 1 crystallized as a monomer with typical bent structure. Asymmetric unit contains two independent slightly different Sr(t-Bu3C5H2)2 molecules with Cp(centroid)-Sr-Cp(centroid) angles of 165.1° and 169.4°. Depending on the way of crystallization two polymorphs (2a and 2b) were observed for Ba(t-Bu3C5H2)2. On sublimation Ba(t-Bu3C5H2)2 crystallizes as chains in which one methyl group of each Ba(t-Bu3C5H2)2 unit interacts with neighboring Ba(t-Bu3C5H2)2 unit’s barium atom. Slow crystallization of waxy evaporation residue of toluene solution results in monoclinic crystals (2b) whose asymmetric unit contains four slightly different individual Ba(t-Bu3C5H2)2 molecules with Cp(centroid)-Ba-Cp(centroid) angles of 161.3-164.9°. Both compounds prepared are volatile, thermally stable and reactive and thus suitable precursors for atomic layer deposition of thin films.  相似文献   

19.
20.
New phases Sr8ARe3Cu4O24 (A=Sr,Ca) were discovered under high-pressure/high-temperature condition. X-ray powder diffraction and electron diffraction studies for these phases indicated that they have an ordered perovskite-type structure with cubic lattices of ∼8 Å. They showed ferromagnetism at room temperature when they were synthesized under high-oxygen-pressure condition. The Ca-containing phase has a very high Tc of 440 K with a spontaneous magnetization of ∼1 μB/f.u.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号