首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
应用一种合理考虑湍流一旋流相互作用及湍流脉动各向异性的新的代数ReynoldS应力模型,对环形通道内的湍流旋流流动进行了数值模拟.研究了旋流数、进口轴向速度和内外半径比等参数对环形通道内湍流旋流流动的影响,以及由此产生的流场变化对强化环形通道内传热的作用.  相似文献   

2.
本文用有限差分法对直管内的湍流旋流进行了数值模拟。计算中采用Boussinesq湍流涡粘性假设的基本思想和K-ε双方程模型来求解雷诺应力各分量。为了反映旋流中湍流转输的非均匀性和各向异性特征,对雷诺应力各分量及与之相主尖的各湍流粘性系数分别进行计算。计算结果表明该模型能较好地反映直管内湍流旋流的流动结构。  相似文献   

3.
双柱单锥型液-液旋流管内流场的激光诊断   总被引:2,自引:0,他引:2  
陆耀军  沈熊  周力行 《力学学报》1997,29(4):395-405
应用激光测速仪,对一种双柱单锥型液 液旋流管内的流动结构,进行了全场范围内的多工况流动诊断研究.揭示出其切向速度由内旋流区和外旋流区构成,其中内旋流区中的速度分布符合准强制涡关系,外旋流区中的速度分布符合准自由涡关系;轴向速度由上行流动区和下行流动区构成,两者之间在直管段以零速点作分界,在锥体段则以零速区作过渡并伴随有一定的回流出现,且该过渡区或回流区的大小随锥体截面的收缩而减小,直到进入直管段后消失;各湍流量的分布以管芯处最大向外逐渐减小,沿轴向是直管段中的湍流度大于锥体段中的湍流度,而且湍流度在旋流管内具有各向异性的特性.  相似文献   

4.
强旋湍流气粒两相流动的PDPA研究   总被引:7,自引:1,他引:7  
采用相多普勒颗粒分析仪(PDPA)对切向进气,轴向缩口出口的旋风筒内强旋单相和气粒两相流动进行了实验研究,给出了强旋流场中,两相湍流的运动及相互作用规律  相似文献   

5.
对短环形流燃烧室内有较强回流的湍流旋流流动进行了模拟,并从两个方面(燃烧室构型和多点喷射)对燃烧室性能的影响进行了分析。计算中采用Reynoldes应力湍流模型(RSM)、EBU-Arrheniue湍流燃烧模型和离散坐标辐射模型描述其燃烧流动,液相采用Lagrange法处理,气相采用SIMPLE法求解。研究表明:在燃料和空气总流量不变的情况下,燃烧室构型对燃烧室出口平均温度影响不大,对出口温度分布、燃烧室内空气流场有比较大的影响。喷嘴数目的改变对出口处的平均温度和平均速度影响不大,但是对出口截面处的温度分布影响比较大,在局部范围可能产生温度比较高的热斑。  相似文献   

6.
工程湍流模式理论综述及展望   总被引:9,自引:0,他引:9  
倪浩清 《力学进展》1996,26(2):145-165
本文讨论了国内外湍流模拟的现状和发展趋势.指出湍流模式的建立除了应遵循理性力学原则外,还必须密切结合工程流体的复杂流动现象,如对具有浮力的回流、分离流及强旋流的模拟,对逆梯度的输运模拟,对单相流、多相流,单流体、多流体的湍流牛顿流体及湍流的非牛顿流体的模拟.应加深对湍流机理的认识,改进湍流模拟手段,结合工程实际,提出较为通用的工程湍流模式.   相似文献   

7.
陆耀军  沈熊 《实验力学》1999,14(3):330-340
对所开发的一种单柱双锥型液--液旋流分离管的内流场进行了全场范围内的多工况流动诊断。与典型的F型旋流管相比,其湍流仍具有各向异性的特性,且其中的湍流脉晚强。  相似文献   

8.
液—液旋流分离管中强旋湍流的K—ε …   总被引:10,自引:0,他引:10  
采用标准k-ε湍流模型,对一种典型液-液旋流分离管中的强旋湍流进行了数值模拟研究。结果表明:该模型对切向速度的数值预报夸大了Rankine涡中的似固核范围。抹煞了似固核外的位涡区;对轴向速度的数值预报未给出心回流区;对其它流场参数的预报结果也都存在有明显的不合理之处。由此证明这种基于Boussinesq假设的各向同性湍流模型,虽然在管道流、平面射流和无旋流等简单流动问题中经受住了大量计算实践的检验  相似文献   

9.
刘宁 《力学学报》2011,43(1):24-31
本文用大涡模拟预测了以不同转速做展向旋转的槽道湍流流动,统计平均的流向速度型在壁面附近与已有实验数据符合很好,在通道中部的预测差异也能给出合理解释,对比不同转速的计算结果,表明展向旋转通道的湍流应力和壁面摩擦力在压力面附近提高、在吸力面附近降低,这些高阶湍流统计量的变化规律可以结合湍流应力输运方程加以解释,漩涡识别技术显示了近壁条带结构,其形态和猝发率受旋转附加力的影响发生改变,进而影响壁面摩擦速度的数值和分布,进一步考察垂直流动方向的截面内速度分布,发现旋转引起了垂直壁面方向的流动,形成正负相间排列的流向涡对,并随着转速的增加向压力面靠近。   相似文献   

10.
采用标准k-ε湍流模型,对一种典型液-液旋流分离管中的强旋湍流进行了数值模拟研究.结果表明:该模型对切向速度的数值预报夸大了Rankine涡中的似固核范围,抹煞了似固核外的位涡区;对轴向速度的数值预报未给出中心回流区;对其它流场参数的预报结果也都存在有明显的不合理之处.由此证明这种基于Boussinesq假设的各向同性湍流模型,虽然在管道流、平面射流和无旋流等简单流动问题中经受住了大量计算实践的检验,但在强旋湍流的数值预报方面的确存在有较大缺陷.此问题的解决有赖于对该模型进行必要的修正或转而采用更加高级的各向异性模型.  相似文献   

11.
A three-parameter model of turbulence applicable to free boundary layers has been developed and applied for the prediction of axisymmetric turbulent swirling flows in uniform and stagnant surroundings under the action of buoyancy forces. The turbulent momentum and heat fluxes appearing in the time-averaged equations for the mean motion have been determined from algebraic expressions, derived by neglecting the convection and diffusion terms in the differential transport equations for these quantities, which relate the turbulent fluxes to the kinetic energy of turbulence, k, the dissipation length scale of turbulence, L, and the temperature covariance, T2. Differential transport equations have been used to determine these latter quantities. The governing equations have been solved using fully implicit finite difference schemes. The turbulence model is capable of reproducing the gross features of pure jet flows, buoyant flows and swirling flows for weak and moderate swirl. The behaviour of a turbulent buoyant swirling jet has been found to depend solely on exit swirl and Froude numbers. The predicted results indicate that the incorporation of buoyancy can cause significant changes in the behaviour of a swirling jet, particularly when the buoyancy strength is high. The jet exhibits similarity behaviour in the initial region for weak swirl and weak buoyancy strengths only, and the asymptotic case of a swirling jet under the action of buoyancy forces is a pure plume in the far field. The predicted results have been found to be in satisfactory agreement with the available experimental data and in good qualitative agreement with other predicted results.  相似文献   

12.
In this presentation, influences of axial vane swirler on heat transfer augmentation and fluid flow are investigated both experimentally and numerically. The swirl generator is installed at the inlet of the annular duct to generate decaying swirling pipe flow. Three different blade angels of 30°, 45° and 60° were examined. Meanwhile, flow rate was adjusted at Reynolds numbers ranging from 10000 to 30000. Study has been done under uniform heat flux condition and air was used as working fluid. Experimental results confirm that the use of vane swirler leads to a higher heat transfer compared with those obtained from plain tubes. Depending on blade angle, overall Nusselt augmentation is found from 50% to 110% while friction factor increases by the range of 90–500%. Thermal Performance evaluation has been done for test section and test section together with swirler. In both cases, thermal performance increases as vane angle is raised and decreases by growth of Re number. When increasing the blade angle, higher decay rate has been observed for local Nusselt number. In CFD analysis, time-averaged governing equations were solved numerically and RSM model was applied as the turbulence model. Here, the simulation results of axial and tangential velocities, turbulent kinetic energy, wall stresses and swirl intensity are provided. They illustrate the effect of swirling pattern on mean flow and turbulence structure, as well as on improving heat transfer enhancement in the annular duct.  相似文献   

13.
This study investigates the Lagrangian acceleration and velocity of fluid particles in swirling flows via direct numerical simulation. The intermittency characteristics of acceleration and velocity of fluid particles are investigated at different swirl numbers and Reynolds numbers. The flatness factor and trajectory curvature are used to analyse the effect of Lagrangian intermittency. The joint probability density function of Lagrangian acceleration and turbulence intensity is shown to explain the augmentation effect of Lagrangian intermittency by the strongly swirling levels under the relatively low intensity of turbulence. In addition, the correlation between the Lagrangian acceleration and the turbulence intensity is enhanced as the swirl level increases. It shows the important effect of swirl on the motion behaviour of fluid particles in the strongly swirling flows.  相似文献   

14.
The mean and turbulent structures of turbulent swirling flow in a heated annulus have been measured. Both forced and free vortex swirling flows were generated, and the outer wall of the test section was heated uniformly. The maximum swirl number was 1.39, Reynolds numbers were up to 200000, and heat input was 10.5 kW. Mean and turbulent velocity components, air and wall temperatures, and wall static pressures were all measured. Hot-film techniques were developed to measure turbulence. From these parameters, the flow and temperature fields, pressure distribution, and heat transfer coefficients were determined. The mechanisms of heat transfer were identified.  相似文献   

15.
统一二阶矩模型用于模拟旋流湍流两相流动   总被引:1,自引:2,他引:1  
周力行  陈涛 《力学学报》1998,30(4):385-390
用统一二阶矩模型(USM)模拟了旋流数为047和15的气粒两相流动,并和实验结果以及k ε kp模型的模拟结果进行了对比.研究结果表明,提高旋流数减小了轴向速度反流区,增大了切向速度似固核区.USM和k ε kp模型预报旋流数为047时的两相速度场差别不大,并都和实验结果接近,但前者预报的旋流数为15的两相速度场比后者有改进,在两种情况下,前者都能揭示出后者无法预报的两相湍流各向异性规律.  相似文献   

16.
In the present work, the turbulent flow downstream a 90° pipe bend is investigated by means of stereoscopic particle image velocimetry. In particular, the three dimensional flow field at the exit of the curved pipe is documented for non-swirling and swirling flow conditions, with the latter being generated through a unique axially rotating pipe flow facility. The non-swirling flow was examined through snapshot proper orthogonal decomposition (POD) with the aim to reveal the unsteady behaviour of the Dean vortices under turbulent flow conditions, the so-called “swirl-switching” phenomenon. In respect to the swirling turbulent pipe flow, covering a wide range of swirl strengths, POD has been employed to study the effect of varying strength of swirl on the Dean vortices as well as the interplay of swirling motion and Dean cells. Furthermore, the visualised large scale structures in turbulent swirling flows through the bend are found to incline and tear up with increasing swirl intensity. The present time-resolved, three component, experimental velocity field data will provide a unique and useful database for future studies; in particular for the CFD community.  相似文献   

17.
Turbulent, swirling flows are encountered frequently in chemical engineering practice. In this article, experiments and simulations on two classes of swirling flows, viz. agitated flows (stirred tanks), and confined swirling flows are discussed. Results of large-eddy simulations of stirred tank flow are compared with experimental data, mainly phase-resolved LDA data of the flow in the vicinity of the impeller. Next to the average velocity field, also the turbulent kinetic energy, and the anisotropy of the Reynolds stress tensor have been assessed. An important application of confined swirling flow is the cyclone separator (hydrocyclones for the separation of liquids, gas cyclones for gas-solid separation). The flow in a swirl tube geometry exhibiting many of the typical features of swirl flows (e.g. vortex breakdown) is discussed. Furthermore, a large-eddy simulation of the gas flow in a high-efficiency Stairmand cyclone separator is presented. Two examples of process modeling based on flow simulations are briefly treated: orthokinetic agglomeration of crystals in a stirred tank, and particle separation in a cyclone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The bifurcation of confined swirling flows was numerically investigated by employing both the k-? and algebraic stress turbulence models. Depending upon the branch solution examined, dual flow patterns were predicted at certain swirl levels. In the lower-branch solution which is obtained by gradually increasing the swirl level from a low-swirl flow, the flow changes with increasing swirl number from the low-swirl flow pattern to a high-swirl flow pattern. In the upper-branch solution which is acquired by gradually decreasing the swirl level from a high-swirl flow, on the other hand, the flow can maintain itself in the high-swirl flow pattern at the swirl levels where it exhibits the low-swirl flow pattern in the lower branch. The bifurcation of confined swirling flows was predicted with either the k-? model or the algebraic stress model being employed. Both the k-? and algebraic stress models result in comparable and sufficiently good predictions for confined swirling flows if high-order numerical schemes are used. The reported poor performance of the k-? model was clarified to be mainly attributable to the occurrence of the bifurcation and the use of low-order numerical schemes.  相似文献   

19.
SUMMARY

This paper describes a computational procedure for the optimization of the performance parameters of a simulated annular combustor. This method has been applied to analyze the influence of the performance parameters and geometries on the annular combustor characteristics and provide a good understanding of combustor internal flow fields, and therefore it can be used for guiding the combustor design process. The approach is based on the solution of governing nonlinear, elliptic partial differential equations for 3-D axisymmetric recirculating turbulent reacting swirling flows and the modelling of turbulence, combustion, thermal radiation and pollutant formation. The turbulence effects are introduced via the modified two-equation κ-ε model. Turbulent combustion is modelled using the κ-ε-g model and a two-step turbulent combustion model is employed for the excess emission of carbon monoxide CO. For the evaluation of the NO pollutant formation rate, the NO pollutant formation model, which takes into account the influence of turbulence, presented here. The radiative heat transfer is handled by the heat flux model. The predictions of the combustor character-istics and performance parameters are made using the present approach.

Predictions of velocity, length of the recirculation zone, combustion efficiency and wall temperature are compared with measurements. Agreement between the predictions and experimental data is very satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号