共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonlinear response of a parametrically excited buckled beam 总被引:6,自引:0,他引:6
A nonlinear analysis of the response of a simply-supported buckled beam to a harmonic axial load is presented. The method of multiple scales is used to determine to second order the amplitude- and phase-modulation equations. Floquet theory is used to analyze the stability of periodic responses. The perturbation results are verified by integrating the governing equation using both digital and analog computers. For small excitation amplitudes, the analytical results are in good agreement with the numerical solutions. The large-amplitude responses are investigated by using a digital computer and are compared with those obtained via an analog-computer simulation. The complicated dynamic behaviors that were found include period-multiplying and period-demultiplying bifurcations, period-three and period-six motions, jump phenomena, and chaos. In some cases, multiple periodic attractors coexist, and a chaotic attractor coexists with a periodic attractor. Phase portraits, spectra of the responses, and a bifurcation set of the many solutions are presented. 相似文献
2.
The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated. The nonlinear partial integrodifferential equation of the motion of the buckled beam with both quadratic and cubic nonlinearities is given by using Hamilton's principle. A set of second-order nonlinear ordinary differential equations are obtained by spatial discretization with the Galerkin method. A high-dimensional model of the buckled beam is derived, concerning nonlinear coupling. The incremental harmonic balance (IHB) method is used to achieve the periodic solutions of the high-dimensional model of the buckled beam to observe the nonlinear frequency response curve and the nonlinear amplitude response curve, and the Floquet theory is used to analyze the stability of the periodic solutions. Attention is focused on the subharmonic resonance caused by the internal resonance as the excitation frequency near twice of the first natural frequency of the buckled beam with/without the antisymmetric modes being excited. Bifurcations including the saddle-node, Hopf, perioddoubling, and symmetry-breaking bifurcations are observed. Furthermore, quasi-periodic motion is observed by using the fourth-order Runge-Kutta method, which results from the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes being excited. 相似文献
3.
Nonlinear Normal Modes of Buckled Beams: Three-to-One and One-to-One Internal Resonances 总被引:2,自引:0,他引:2
Nonlinear normal modes of a fixed-fixed buckled beam about its first post-buckling configuration are investigated. The cases of three-to-one and one-to-one internal resonances are analyzed. Approximate solutions for the nonlinear normal modes are computed by applying the method of multiple scales directly to the governing integral-partial-differential equation and associated boundary conditions. Curves displaying variation of the amplitude of one of the modes with the internal-resonance-detuning parameter are generated. It is shown that, for a three-to-one internal resonance between the first and third modes, the beam may possess one stable uncoupled mode (high-frequency mode) and either (a) one stable coupled mode, (b) three stable coupled modes, or (c) two stable and one unstable coupled modes. For the same resonance, the beam possesses one degenerate mode (with a multiplicity of two) and two stable and one unstable coupled modes. On the other hand, for a one-to-one internal resonance between the first and second modes, the beam possesses (a) two stable uncoupled modes and two stable and two unstable coupled modes; (b) one stable and one unstable uncoupled modes and two stable and two unstable coupled modes; and (c) two stable uncoupled and two unstable coupled modes (with a multiplicity of two). For a one-to-one internal resonance between the third and fourth modes, the beam possesses (a) two stable uncoupled modes and four stable coupled modes; (b) one stable and one unstable uncoupled modes and four stable coupled modes; (c) two unstable uncoupled modes and four stable coupled modes; and (d) two stable uncoupled modes and two stable coupled modes (each with a multiplicity of two). 相似文献
4.
An analysis is presented for the primary resonance of a clamped-hinged beam, which occurs when the frequency of excitation is near one of the natural frequencies,n . Three mode interaction (2 31 and 3 1 + 22) is considered and its influence on the response is studied. The case of two mode interaction (2 31) is also considered to compare it with the case of three mode interaction. The straight beam experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is applied to solve the system. Steady-state responses and their stability are examined. Results of numerical investigations show that there exists no significant difference between both modal interactions' influences on the responses. 相似文献
5.
The nonlinear interactions of a microarch resonator with 3:1 internal resonance are studied. The microarch is subjected to a combination of direct current(DC)and alternating current(AC) electric voltages. Thin piezoelectric layers are thoroughly bonded on the top and bottom surfaces of the microarch. The piezoelectric actuation is not only used to modulate the stiffness and resonance frequency of the resonator but also to provide the suitable linear frequency ratio for the activation of the inte... 相似文献
6.
In this paper, the forced response of a non-linear axially moving strip with coupled transverse and longitudinal motions is studied. In particular, the response of the system is examined in the neighborhood of a 3 : 1 internal resonance between the first two transverse modes. The equations of motion are derived using the Hamilton's Principle and discretized by the Galerkin's method. First, with the longitudinal motion neglected, the forced transverse response is investigated by applying the method of multiple scales to assess the effects of speed and the internal resonance. In general, the speed is shown to affect each mode differently. The internal resonance results in the constant solutions having transition to instability of both a saddle-node type and a Hopf bifurcation. In the region where the Hopf bifurcation occurs, steady-state periodic motion does not exist. Instead the stable motion is amplitude- and phase-modulated. When the coupled system with longitudinal motion is examined with internal resonance, results reveal that the modulated motions disappear. Thus, the presence of the longitudinal motion has a stabilizing effect on the transverse modes in the Hopf bifurcation region. The second longitudinal mode is shown to drift due primarily to a direct excitation of the first transverse mode. Effects of the longitudinal motion on the transverse response are shown to be significant for speeds both away from and close to the critical speed. 相似文献
7.
The bifurcation analysis of a simple electric power system involving two synchronous generators connected by a transmission network to an infinite-bus is carried out in this paper. In this system, the infinite-bus voltage are considered to maintain two fluctuations in the amplitude and phase angle. The case of 1:3 internal resonance between the two modes in the presence of parametric principal resonance is considered and examined. The method of multiple scales is used to obtain the bifurcation equations of this system. Then, by employing the singularity method, the transition sets determining different bifurcation patterns of the system are obtained and analyzed, which reveal the effects of the infinite-bus voltage amplitude and phase fluctuations on bifurcation patterns of this system. Finally, the bifurcation patterns are all examined by bifurcation diagrams. The results obtained in this paper will contribute to a better understanding of the complex nonlinear dynamic behaviors in a two-machine infinite-bus (TMIB) power system. 相似文献
8.
This paper investigates the transverse 3:1 internal resonance of an axially transporting nonlinear viscoelastic Euler-Bernoulli beam with a two-frequency parametric excitation caused by a speed perturbation. The Kelvin-Voigt model is introduced to describe the viscoelastic characteristics of the axially transporting beam. The governing equation and the associated boundary conditions are obtained by Newton’s second law. The method of multiple scales is utilized to obtain the steady-state responses. The Routh-Hurwitz criterion is used to determine the stabilities and bifurcations of the steady-state responses. The effects of the material viscoelastic coefficient on the dynamics of the transporting beam are studied in detail by a series of numerical demonstrations. Interesting phenomena of the steady-state responses are revealed in the 3:1 internal resonance and two-frequency parametric excitation. The approximate analytical method is validated via a differential quadrature method. 相似文献
9.
《Wave Motion》2018
We theoretically investigated the cumulative nonlinear guided waves caused by internal resonance, using the method of multiple scales (MMS), which can construct better approximations to the solutions of perturbation problems. In this study, we consider nonlinearity only on the boundary instead of material nonlinearity or geometric nonlinearity. We showed nonlinear effects on the amplitudes of a lower mode and a higher mode depending on the propagation length. Also, we examined effects of wavenumber detuning from a phase matching condition of the two modes. If the wavenumber detuning is exactly equal to zero, the mechanical energy of the lower mode is transferred through nonlinear coupling to the energy of the higher mode, unilaterally. However, if a wavenumber detuning is not equal to zero, amplitude of the two modes change in a cyclic fashion during wave propagation. The amount of this amplitude variation and its cycle length are determined by the eigenfunctions of the two modes, the nonlinear parameter and the wavenumber detuning. 相似文献
10.
In this paper we formulate an initial-boundary-value-problem describing the three-dimensional motion of a cantilever in a Magnetic Resonance Force Microscopy setup. The equations of motion are then reduced to a modal dynamical system using a Galerkin ansatz and the respective nonlinear forces are expanded to cubic order. The direct application of the asymptotic multiple scales method to the truncated quadratic modal system near a 2:1 internal resonance revealed conditions for periodic and quasiperiodic energy transfer between the transverse in-plane and out-of-plane modes of the MRFM cantilever. However, several discrepancies are found when comparing the asymptotic results to numerical simulations of the full nonlinear system. Therefore, we employ the reconstitution multiple scales method to a modal system incorporating both quadratic and cubic terms and derive an internal resonance bifurcation structure that includes multiple coexisting in-plane and out-of-plane solutions. This structure is verified and reveals a strong dependency on initial conditions in which orbital instabilities and complex out-of-plane non-stationary motions are found. The latter are investigated via numerical integration of the corresponding slowly-varying evolution equations which reveal that breakdown of quasiperiodic tori is associated with symmetry-breaking and emergence of irregular solutions with a dense spectral content. 相似文献
11.
Barun Pratiher 《International Journal of Non》2011,46(5):685-692
The non-linear response of a magneto-elastic translating beam having prismatic joint for higher resonance conditions is studied. A periodically varying transverse magnetic field is applied to the system. Two frequencies of prismatic motion and oscillating transverse magnetic field are implemented to the system. The method of multiple scales as one of the perturbation techniques is used to derive two first order ordinary differential equations that govern the time variation of the amplitude and phase of the response. Then a stability analysis is conducted for subharmonic resonance and simultaneous resonance conditions. A parametric study is performed to investigate the effect of magnetic field strength, amplitude of prismatic motion, damping and payload mass on the frequency response curves for both the resonance conditions. The catastrophic failure of the system may occur due to the presence of saddle-node and pitchfork bifurcations. The results obtained by method of multiple scales are compared with those obtained by numerically integrating the reduced equations and are found to be in good agreement. The developed results can be applied to control the vibration of a beam with prismatic joint subjected to magnetic field for third order subharmonic resonance and simultaneous resonance conditions. 相似文献
12.
Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances 总被引:2,自引:0,他引:2
Nonlinear planar oscillations of suspended cables subjected to external excitations with three-to-one internal resonances are investigated. At first, the Galerkin method is used to discretize the governing nonlinear integral–partial-differential equation. Then, the method of multiple scales is applied to obtain the modulation equations in the case of primary resonance. The equilibrium solutions, the periodic solutions and chaotic solutions of the modulation equations are also investigated. The Newton–Raphson method and the pseudo-arclength path-following algorithm are used to obtain the frequency/force–response curves. The supercritical Hopf bifurcations are found in these curves. Choosing these bifurcations as the initial points and applying the shooting method and the pseudo-arclength path-following algorithm, the periodic solution branches are obtained. At the same time, the Floquet theory is used to determine the stability of the periodic solutions. Numerical simulations are used to illustrate the cascades of period-doubling bifurcations leading to chaos. At last, the nonlinear responses of the two-degree-of-freedom model are investigated. 相似文献
13.
Nonlinear normal modes for elastic structures have been studied extensively in the literature. Most studies have been limited
to small nonlinear motions and to structures with geometric nonlinearities. This work investigates the nonlinear normal modes
in elastic structures that contain essential inertial nonlinearities. For such structures, based on the works of Crespo da
Silva and Meirovitch, a general methodology is developed for obtaining multi-degree-of-freedom discretized models for structures
in planar motion. The motion of each substructure is represented by a finite number of substructure admissible functions in
a way that the geometric compatibility conditions are automatically assured. The multi degree-of-freedom reduced-order models
capture the essential dynamics of the system and also retain explicit dependence on important physical parameters such that
parametric studies can be conducted. The specific structure considered is a 3-beam elastic structure with a tip mass. Internal
resonance conditions between different linear modes of the structure are identified. For the case of 1:2 internal resonance
between two global modes of the structure, a two-mode nonlinear model is then developed and nonlinear normal modes for the
structure are studied by the method of multiple time scales as well as by a numerical shooting technique. Bifurcations in
the nonlinear normal modes are shown to arise as a function of the internal mistuning that represents variations in the tip
mass in the structure. The results of the two techniques are also compared. 相似文献
14.
RLC串联电路与微梁耦合系统1:2内共振分析 总被引:1,自引:0,他引:1
研究电阻电感电容串联电路与微梁耦合系统的非线性振动,应用拉格朗日-麦克斯韦方程,建立受静电激励RLC串联电路与微梁耦合系统的数学模型。根据非线性振动的多尺度法,得到了在内共振ω2≈2ω1的情况下的近似解,并进行数值计算,得到用椭圆函数表示的解析解。计算结果表明,在无阻尼情况下,振动和能量在两个态间相互转换,没有能量损失。 相似文献
15.
Nonstationary excitations of slender, elastic, cantilevered beams with equal principal moments of inertia are considered. The excitation frequency is slowly increased or decreased through a resonance of the first mode at a constant rate. Three resonances are investigated: primary resonance, superharmonic resonance of order two and subharmonic resonance of order two. After application of Galerkin's method with three modes, the nonlinear, nonstationary response of the first mode of the beam is determined by two methods: integration of the modulation equations obtained from the method of multiple scales, and direct numerical integration of the temporal equations of motion. Time histories are presented and the effects of excitation amplitude, rate of acceleration or deceleration through resonance, damping and initial conditions of the disturbance on the maximum response are studied. The effect of a persistent random disturbance is also examined. Although the excitation acts in the vertical plane, whirling occurs if the beam is subjected to out-of-plane disturbances. 相似文献
16.
黏弹性传动带1:3内共振时的周期和混沌运动 总被引:14,自引:0,他引:14
研究了参数激励作用下黏弹性传动带在1:3内共振时的周期解分岔和混沌动力学.
同时考虑传动带的线性外阻尼因素和材料内阻尼因素.
首先建立了具有线性外阻尼情况下的黏弹性传动带平面运动时的非线性动力学方程,
黏弹性材料的本构关系用Kelvin模型描述. 然后考虑黏弹性传动带的横向振动问题,
利用多尺度法和Galerkin离散法得到黏弹性传动带系统在1:3内共振时的平均方程.
最后利用数值模拟方法研究了黏弹性传动带系统的周期振动和混沌动力学,
得到了系统在不同参数下的混沌运动.
数值模拟结果说明黏弹性传动带系统存在周期分岔, 概周期运动及混沌运动. 相似文献
17.
The nonlinear response of rectangular and square metallic plates subjectto transverse harmonic excitations is studied. The nonlinearitiesoriginate from the use of Von Kármán strains. The method of multiplescales is used to solve the system of differential equationsapproximately. Frequency response curves are presented for both squareand rectangular plates for primary resonance of either mode in thepresence of a one-to-one internal resonance. Stability of steady statesolutions is investigated. Bifurcation points and their types arediscussed. 相似文献
18.
Nonlinear Vibration Control of a System with Dry Friction and Viscous Damping Using the Saturation Phenomenon 总被引:1,自引:0,他引:1
Application of saturation to provide active nonlinear vibration control was introduced not long ago. Saturation occurs when two natural frequencies of a system with quadratic nonlinearities are in a ratio of around 2:1 and the system is excited at a frequency near its higher natural frequency. Under these conditions, there is a small upper limit for the high-frequency response and the rest of the input energy is channeled to the low-frequency mode. In this way, the vibration of one of the degrees of freedom of a coupled 2 degrees of freedom system is attenuated. In the present paper, the effect of dry friction on the response of a system that implements this vibration absorber is discussed. The system is basically a plant with a permanent magnet DC (PMDC) motor excited by a harmonic forcing term and coupled with a quadratic nonlinear controller. The absorber is built in electric circuitry and takes advantage of the saturation phenomenon. The method of multiple scales is used to find approximate solutions. Various response regimes of the closed-loop system as well as the stability of these regimes are studied and the stability boundaries are obtained. Especial attention is paid on the effect of dry friction on the stability boundaries. It is shown that while dry friction tends to shrink the stable region in some parts, it enlarges other parts of the stable region. To verify the theoretical results, they have been compared with numerical solution and good agreement between the two is observed.This work was done while the authors were associated with the Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran. 相似文献
19.
In this paper the nonlinear response of a base-excited slender beam carrying an attached mass is investigated with 1:3:9 internal resonances for principal and combinationparametric resonances. Here the method of normal forms is used to reduce the second order nonlinear temporal differential equation of motion of the system to a set offirst order nonlinear differential equations which are used to find the fixed-point, periodic, quasi-periodic and chaotic responses of the system.Stability and bifurcation analysis of the responses are carried out and bifurcation sets are plotted. Many chaotic phenomena are reported in this paper. 相似文献