首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The authors have previously proposed a theoretical model for exotic spin alignment in organic molecular assemblages: The alternating chain of organic biradicals in a singlet (Sb=0) ground state and monoradicals with S=1/2 has a ferrimagnetic ground state for the whole chain, which has been termed generalized ferrimagnetism. An important feature of the generalized ferrimagnetic spin alignment has been found in the deviation of the expectation value Sb2 of the biradical spin from zero. Even a triplet-like spin state Sb2=2 (Sb=1) has been predicted in the theoretical calculations. In this study, we have found experimental evidence for the pseudo-triplet state appearing in the ground-state singlet biradical of a real open-shell compound. At first, we have demonstrated from theoretical calculations that the singlet biradical has Sb2=2 (Sb=1) in a molecular pair with an S=1 metal ion as well as with the S=1/2 monoradical. The pseudo-triplet state of the biradical affords a singlet state of the whole system of the biradical-metal ion pair, which is readily detectable in experiments for verifying the theoretical prediction. As a model compound for the biradical-metal ion pair, a transition metal complex, [(bnn)(Ni(hfac)2)1.5(H2O)] (1), has been synthesized from a nitronyl nitroxide-based ground-state singlet biradical bnn and Ni(hfac)2. From X-ray crystallographic analyses, the compound contains a molecular pair of bnn and Ni(hfac)2, which serves as a model system under the above theoretical studies. It has been found from the analysis of the temperature dependence of magnetic susceptibility that the bnn-Ni(hfac)2 pair has the singlet (S=0) ground state. The singlet ground state of the pair results from an antiparallel coupling of the pseudo-triplet of the biradical and the S=1 spin on the Ni ion. The pseudo-triplet state in the ground-state singlet biradical has thus been verified experimentally, which is crucially important to realize the generalized ferrimagnetic spin alignment.  相似文献   

2.
The trinuclear Cu(II) complex [(talen)Cu(II)(3)] (1) using the new triplesalen ligand H(6)talen has been synthesized and structurally characterized. The three Cu(II) ions are bridged in a m-phenylene linkage by the phloroglucinol backbone of the ligand. This m-phenylene bridging mode results in ferromagnetic couplings with an S(t) = (3)/(2) spin ground state, which has been analyzed by means of EPR spectroscopy and DFT calculations. The EPR spectrum exhibits an unprecedented pattern of 10 hyperfine lines due to the coupling of three Cu(II) ions (I = (3)/(2)). Resonances around g = 4 in both perpendicular and parallel mode EPR spectra demonstrate a zero-field splitting of D approximately 74 x 10(-4) cm(-1) arising from anisotropic/antisymmetric exchange interactions. The DFT calculations show an alteration in the sign of the spin densities of the central benzene ring corroborating the spin-polarization mechanism as origin for the ferromagnetic coupling.  相似文献   

3.
Novel pyridine-based nitronyl nitroxide (NIT) biradicals, 3,5-bis[4-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)phenylethynyl)]pyridine (1) and 2,6-bis[4-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)phenylethynyl)]pyridine (2), and monoradicals, 4-(5-bromopyridine-3-ylethynyl)-1-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)benzene (3), 4-trimethylsilylethynyl-1-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)benzene (4), and 4-trimethylsilylethynyl-1-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)pyridine (5), were synthesized and investigated by ESR and UV-vis spectroscopy. The solution EPR measurements of the biradicals gave well-resolved, nine-line spectra with exact half line spacing as compared to monoradicals (giso = 2.0067) with isotropic line spacing /aN/= 7.36 G. This indicates strong, intramolecular exchange coupling (J > 7 x 10(-4) cm(-1); J/aN > 1) of the biradicals with in the limit of EPR. The temperature dependence on the Deltams = +/-2 signal intensity of biradicals follow Curie behavior down to 4 K ascertaining the triplet ground state or its near-degeneracy with the singlet state. UV-vis studies of 1-5 show characteristic differences in the extinctions of n-pi transitions around 600 nm. Both biradicals 1 and 2 were crystallized in monoclinic space groups C2/c and P2(1)/a with the intraradical distances 1.54 and 1.47 nm, respectively. Computational studies of the biradicals 1, 2, and 1,3-bis[4-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)phenylethynyl)]benzene (T) were performed by the AM1/CAS(8,8) method to calculate the singlet-triplet (DeltaEST) energy difference and the spin density distribution. Results show that the position of the pyridyl nitrogen in 1 and 2 in comparison with T does not alter the triplet ground-state spin multiplicities supporting the obtained experimental results.  相似文献   

4.
Quantum chemical calculations are carried out to study the reaction of ethane with molecular oxygen in the ground triplet and singlet delta states. Transition states, intermediates, and possible products of the reaction on the triplet and singlet potential energy surfaces are identified on the basis of the coupled-cluster method. The basis set dependence of coupled-cluster energy values is estimated by the second-order perturbation theory. The values of energy barriers are also refined by using the compound CBS-Q and G3 techniques. It was found that the C(2)H(6) + O(2)(X(3)Σ(g)(-)) reaction leads to the formation of C(2)H(5) and HO(2) products, whereas the C(2)H(6) + O(2)(a(1)Δ(g)) process produces C(2)H(4) and H(2)O(2) molecules. The appropriate rate constants of these reaction paths are estimated on the basis of variational and nonvariational transition-state theories assuming tunneling and possible nonadiabatic transitions in the temperature range 500-4000 K. The calculations showed that the rate constant of the C(2)H(6) + O(2)(a(1)Δ(g)) reaction path is much greater than that of the C(2)H(6) + O(2)(X(3)Σ(g)(-)) one. At the same time, the singlet and triplet potential surface intersection is detected that leads to the appearance of the nonadiabatic quenching channel O(2)(a(1)Δ(g)) + C(2)H(6) → O(2)(X (3)Σ(g)(-)) + C(2)H(6). The rate constant of this process is estimated with the use of the Landau-Zener model. It is demonstrated that, in the case of the existence of thermal equilibrium in the distribution of molecules over the electronic states, at low temperatures (T < 1200 K) the main products of the reaction of C(2)H(6) with O(2) are C(2)H(4) and H(2)O(2), rather than C(2)H(5) and HO(2). At higher temperature (T > 1200 K) the situation is inverted.  相似文献   

5.
Quantum chemical calculations were carried out to study the reaction of carbon monoxide with molecular oxygen in the ground triplet and singlet delta states. Transition states and intermediates that connect the reactants with products of the reaction on the triplet and singlet potential energy surfaces were identified on the base of coupled-cluster method. The values of energy barriers were refined by using compound techniques such as CBS-Q, CBS-QB3, and G3. The calculations showed that there exists an intersection of triplet and singlet potential energy surfaces. This fact leads to the appearance of two channels for the triplet CO+O(2)(X(3)Σ(g)(-)) reaction, which produces atomic oxygen in the ground O((3)P) and excited O((1)D) states. The appropriate rate constants of all reaction paths were estimated on the base of nonvariational transition-state theory. It was found that the singlet reaction rate constant is much greater than the triplet one and that the reaction channel CO+O(2)(a(1)Δ(g)) should be taken into consideration to interpret the experimental data on the oxidation of CO by molecular oxygen.  相似文献   

6.
《Polyhedron》2007,26(9-11):2161-2164
Theoretical methods based on density functional theory have been employed to analyze the exchange interactions in a Fe9W12 polyoxometalate complex. The calculated values of the seven exchange coupling constants required by the molecular structure agree well with those reported previously for other FeIII polynuclear complexes and give an S = 15/2 single determinant ground state, with a first excited state that has S = 5/2.  相似文献   

7.
A series of novel neutral tungsten(III) and cationic tungsten(IV) complexes with disubstituted 4,4'-R,R-2,2'-bipyridyl (R(2)-bpy) ligands of the type [CpW(R(2)-bpy)Cl(2)](n+) (n = 0,1) were prepared and characterized by X-ray crystallography. Susceptibility measurements of the tungsten(IV) complexes revealed an intrinsic paramagnetism of these compounds and evidenced different magnetic properties of the dimethylamino and methyl (R = NMe(2), Me) substituted tungsten(IV) compounds in solution and in the solid state. In dichloromethane solution, singlet ground states with thermally populated triplet states were observed, whereas triplet (R = Me) and singlet ground states (R = NMe(2)) were observed in the solid state. Using both experimental and theoretical techniques (DFT) allowed to establish solvation and ligand effects to account for the different magnetic behavior. Thermodynamic parameters were derived for the spin equlibria in solution by fits of the temperature dependent (1)H NMR shifts to the Van Vleck equation and were found to be in excellent agreement with the DFT calculations.  相似文献   

8.
Summary The fluoroescence quenching of 1,4-dimethoxynaphthalene (1) and 1,8-dimethoxynaphthalene (2) by tetraphenylporpyrin (3), 9,10-diphenylanthracene (4), and 3-cyano-4-phenyl-6-(p-tolyl)-pyridin-2-one (5) has been studied in chloroform solution. The quenching occursvia a resonance energy transfer mechanism. The rate constant for the energy transfer (k ET) of donor2 is slower than that of1 by the same acceptors, indicating that the steric effect dominates the ionization potential effect in all systems. The calculated critical transfer distances (R 0) are 17–72 Å. In contrast, charge transfer is the predominant pathway of electronic deexcitation in the fluorescence quenching of donors1 and2 by 7,7,8,8-tetracyanoquinone-dimethane (6) in chloroform. The roles of temperature and geometrical structure of the donors on the efficiency of fluorescence quenching of1 and2 by acceptor6 have also been studied.
Wechselwirkung des angeregten Singlett-Zustands von 1,4- und 1,8-Dimethoxynaphthalin mit einigen organischen Verbindungen: eine Untersuchung zur Fluoreszenzlöschung
Zusammenfassung Die Löschung der Fluoreszenz von 1,4-Dimethoxynaphthalin (1) und 1,8-Dimethoxynaphthalin (2) durch Tetraphenylporphyrin (3), 9,10-Diphenylanthracen (4) und 3-Cyano-4-phenyl-6-(p-tolyl)-pyridin-2-on (5) in Chloroform wurde untersucht. Die Löschung verläuft über einen Resonanzenergietransfermechanismus. Die Geschwindigkeitskonstante für den Energietransfer (k ET) ist bei gleichem Akzeptor für den Donor2 niedriger als für1. Daraus läßt sich schließen, daß in allen untersuchten Systemen der sterische Effekt über den Effekt des Ionisierungspotentials dominiert. Die berechneten kritischen Transferdistanzen betragen 17–72 Å. Im Gegensatz zu diesen Beobachtungen verläuft der vorherrschende Relaxationsmechanismus bei der Fluoreszenzlöschung von1 und2 durch 7,7,8,8-Tetracyanochinon-dimethan (6) über einencharge-transfer-Prozeß. Die Einflüsse von Temperatur und Geometrie der Verbindungen auf die Effizienz der Fluoreszenzlöschung von1 und2 durch den Akzeptor6 wurden ebenfalls untersucht.
  相似文献   

9.
10.
Equilibrium geometries for the electronic ground and first excited singlet states of 1,1'-binaphthyl have been calculated by minimization of the total energy with respect to all internal coordinates. Using these results, an interpretation of the fluorescence S1→ S0 and absorption spectra Sm ← S0 and Sn ← S1 in rigid and fluid solutions is given.For the first time the equilibrium geometry of the first excited singlet state of 1, 1′-binaphthyl has been calculated. On excitation to the S1 state the dihedral angle θ between the two naphthalene moieties is de- creased from 61 ° to 41 °. A detailed survey of CH bond lengths in the S0 and S1 states has been given. This result should be of particular importance for the theoretical treatment of radiationless transitions.Using equilibrium geometries for the S0 and S1 states a satisfactory interpretation of the Sm ← S0 and Sn ← S1 absorption spectra as well as of the fluorescence spectra in fluid and rigid solutions can be given. Concerning the Sn ← S1 absorption spectrum in fluid solution, the calculations predict a strong absorption (A ← B transition) in the still uninvestigated region of energies lower than 11000 cm?1.From the results of this paper and of other calculations it can be concluded that the Warshel-Karplus method yields reliable equilibrium geometries for electronic ground and excited states of unsaturated hydrocarbons [22,23].  相似文献   

11.
The temperature dependence of magnetic susceptibility and sublattice magnetizations were calculated for a Heisenberg Hamiltonian of an S = 1 and S = 1/2 antiferromagnetic alternating spin chain by means of the many-body Green's function theory to show the possible occurrence of a ferrimagnetic phase transition for genuinely organic molecule-based magnets. The S = 1 site in the chain is composed of two S = 1/2 spins coupled by a finite ferromagnetic interaction. From the calculated results, it is found that the sublattice magnetization at low-spin S = 1/2 sites changes its sign from negative to positive with increasing temperature, giving rise to the spin alignments along the chain changing from antiferromagnetic to ferromagnetic ones, which indicates that there is a magnetic phase transition occurring. Because of the weak intermolecular antiferromagnetic interactions, the curves of the magnetic susceptibility multiplied by temperature (chiT) against temperature show a round peak at low temperatures, which is well consistent with recent experimental observations, and the ferrimagnetic phase transition could only be detected at an ultralow-temperature region and under very weak external magnetic fields in practical organic materials. From the analysis of the sublattice magnetizations, it is uncovered that the appearance of the low-temperature peak in the curves of the chiT originates from the ferromagnetic spin alignments for all the spins along the chain, and the intermolecular antiferromagnetic interactions play a pivotal role in ferrimagnetic spin alignments of the magnetic systems. It is also found that the higher spatial symmetry of the intermolecular antiferromagnetic interactions have contributions to stabilize the ferrimagnetic ordering state in the molecule-based magnetic materials.  相似文献   

12.
We performed ab initio molecular orbital (MO) calculations using Hartree—Fock SCF, and second- and fourth-order Møller—Plesset perturbation theory for hydrogen migration reactions on the singlet vinyl fluoride potential energy surface. We used different basis sets and polarization functions to obtain the stationary point geometries and activation barriers. Basis set and the polarization function extension have small effects, while the correlation energy evaluation leads to new conclusions for one of the studied reactions: the product singlet CHCH2F is not a true local minimum on the potential energy surface.  相似文献   

13.
New poly(m-phenylene 4,4′-oxydiphthalimide)s containing various side chains, such as 6-(4-biphenylmethoxy)hexyloxy group and 6-(phenylphenoxy)hexyloxy isomers, were synthesized, giving thin films of a high quality. All the polyimides apparently were almost amorphous, but exhibited short-range ordering in some extent, depending on the side chains. By incorporating side chains, the thermal properties, including stability, thermal expansivity, and glass transition temperature, were generally degraded, whereas the optical and dielectric properties were improved. All the polyimides exhibited a good rubbing processability and excellent performance in the controlling of both the alignment and the pretilt of LC molecules in the LC cell. The pretilt angle of LC molecules was easily achieved in a wide-angle range of 8–27°, depending upon the rubbing density as well as the incorporated side chains. The pretilting of LC molecules was very sensitive to all the molecular parameters (namely, the flexibility of polymer chain backbone as well as the isomeric structure of biphenyl mesogen end group, spacer length, and spacer conformation in the side chain) in the polyimide, in addition to the rubbing process. In particular, the side chains, which are much shorter in length than the long alkyl side chains in the polyimides being used widely as LC alignment layers, were evident to involve effectively in the alignment of and the pretilt of LC molecules, which are highly desired in the LC display industry. This might mainly be attributed to a strong interaction between the biphenyl mesogen end group of the side chain and the LC molecule. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2909–2921, 1999  相似文献   

14.
From DFT and time-dependent DFT calculations on Mn(II)SOD and Fe(II)SOD active site models interacting with O2- we have determined that metal-to-ligand charge transfers stabilise the S = 2 and S = 5/2 spin states as ground spin states for the [Mn(II)SOD-02-] and [Fe(II)SOD-O2-] model complexes, respectively. These charge transfers are ruled by the electronic configuration of the metal ion, and they can be determinant in the catalysis reaction.  相似文献   

15.
A chromophore featuring a diyne bridge that connects two dibromobenzene moieties shows a much improved two-photon singlet oxygen generation ability in the biological transparency window compared to a related and relevant literature benchmark, as a result of a distorted ground state.  相似文献   

16.
The mechanisms for the three products ZrS+, and ZrOS+ of the title reaction have been studied by using B3LYP/6-311+G* and CCSD(T)/SDD+6-311+G* methods. It is found that both ZrS+ and formations involve the same O/S exchange process via a four-center transition state TS12 to form an intermediate IM2. Exception of that IM2 can dissociate into the ZrS+ product, a favorable intramolecular rearrangement mechanism associated with the formation has been identified, which explains why ZrS+ was excluded as a precusor for the formation and why the lower efficiency of the ZrS+ formation was observed in experiment. For the formation of ZrOS+, two parallel channels (path A and B) yielding their corresponding product isomer have been identified. Path B involving an insertion–elimination mechanism with a calculated barrier underestimated by ca. 25.0 kJ/mol should be attributed to the threshold of 114.8 ± 12.5 kJ/mol assigned in the experiment. But path A should make some contributions to the formation of ZrOS+ at elevated energy.  相似文献   

17.
Two new heterometallic Ni(II)(n)Cu(II)((9-n)) complexes [n = 1 (2) and 2 (3)] have been synthesized following a multicomponent self-assembly process from a n:(3 - n):2:6 stoichiometric mixture of Ni(2+), Cu(2+), L(6-), and [CuL'](2+), where L and L' are the bridging and blocking ligands 1,3,5-benzenetris(oxamate) and N,N,N',N',N'-pentamethyldiethylenetriamine, respectively. Complexes 2 and 3 possess a unique cyclindrical architecture formed by three oxamato-bridged trinuclear linear units connected through two 1,3,5-substituted benzenetris(amidate) bridges, giving a triangular metallacyclophane core. They behave as a ferromagnetically coupled trimer of two (2)/one (3) S = (1)/(2) Cu(II)(3) plus one (2)/two (3) S = 0 Ni(II)Cu(II)(2) linear units with overall S = 1 Ni(II)Cu(II)(8) (2) and S = (1)/(2) Ni(II)(2)Cu(II)(7) (3) ground states.  相似文献   

18.
19.
X-band time-resolved electron paramagnetic resonance (TREPR) spectra of three flexible biradicals of varying chain length and structure were obtained in liquid and supercritical carbon dioxide (CO2) solutions and compared to conventional solvents. For C16 acyl-alkyl biradical 1a, an average spin exchange interaction between the radical centers, J(avg), was obtained by spectral simulation using a simple model for spin-correlated radical pairs (SCRPs) and a small amount of T2 relaxation from a previously established J modulation mechanism. A large solvent effect on J(avg) was observed for the first time, varying by almost 1 order of magnitude from CO2 (J(avg) = -120 +/- 10 MHz) to heavy mineral oil (-11 +/- 3 MHz) for 1a. For C15 bis(alkyl) biradical 1b, spectra obtained under supercritical conditions are only slightly different from those detected in liquid CO2 but differ from spectra taken in benzene. For C10 acyl-alkyl biradical 2a, more emissive spin polarization due to S-T- mixing is observed in CO2 than in benzene. These results are discussed in terms of solvent properties such as dielectric constant, viscosity, and specific interactions. Both chain dynamics and changes to the equilibrium distribution of end-to-end distances can alter J(avg) and the observed ratio of S-T0 to S-T- mixing; however, faster chain dynamics is concluded to be the most likely cause of the observed effects in these systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号