首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
用MTT法和AO/EB荧光染色法观察了硒化壳聚糖对K 562肿瘤细胞株生长的影响。结果发现,硒化壳聚糖可有效地抑制K 562细胞生长,并呈量效、时效关系。经硒化壳聚糖作用后的细胞可明显出现核固缩、碎裂等凋亡形态改变。硒化壳聚糖可诱导K 562细胞凋亡,抑制其生长。  相似文献   

2.
单独和合用硒化壳聚糖与阿霉素对K562细胞作用的研究   总被引:1,自引:0,他引:1  
应用MTT法和AO/EB荧光染色法观察单独和合用硒化壳聚糖与阿霉素对K562细胞株的影响,结果发现硒化壳聚糖和阿霉素均可有效地抑制K562细胞生长。且两药联合使用效果更佳。硒化壳聚糖可诱导细胞凋亡。两药合用诱导细胞凋亡效果更好。  相似文献   

3.
采用MTT法运用阔叶十大功劳逆转白血病细胞株K562/ADM对阿霉素(ADM)耐药活性进行评价,考察了阔叶十大功劳不同萃取分离部位对ADM的增敏活性.活性数据显示阔叶十大功劳的各提取部位均对K562/ADM细胞具有不同程度的增敏ADM活性.其中样品Ⅴ增敏活性最高,而样品Ⅴ中主要成分为生物碱类物质,这说明阔叶十大功劳中生物碱类成分具有逆转肿瘤细胞耐药活性.然而样品Ⅰ-Ⅴ逆转肿瘤细胞耐药活性差别不显著,这说明阔叶十大功劳中生物碱类成分含量丰富,在各个提取部位均大量存在,更适合全草入药,在逆转肿瘤细胞耐药方面具有非常好的潜在应用价值.  相似文献   

4.
硒化壳聚糖对NB4细胞作用的实验研究   总被引:2,自引:0,他引:2  
应用MTT法、AO/EB荧光染色法和NBT还原法观察硒化壳聚糖对NB4肿瘤细胞株生长的影响。结果发现,硒化壳聚糖可有效地抑制NB4细胞生长,并呈量效、时效关系。经100 mg/L及以上剂量硒化壳聚糖作用后的细胞可明显出现核固缩、碎裂等凋亡形态改变。而经100 mg/L以下剂量硒化壳聚糖作用后,细胞可出现诱导分化成熟的表现。  相似文献   

5.
硒抑制体外白血病细胞的生长和增殖.并能诱导部分白血病细胞分化成熟。但其药理作用因硒制剂的不同而异.硒代二半胱氨酸抑制V937和K562血病细胞的生长和增殖,半数抑制浓度为3.0μmol/L,经30μmol/L硒代二半胱氨酸作用3天后,U937胞吞噬率以5%上升至14%,K562细胞内血红蛋白含量由0.20增至0.40μg/10^6细胞,说明硒代二半胱氨酸能诱导部分白血病细胞分化成熟。  相似文献   

6.
为探讨硒化壳聚糖对体外培养人早幼粒白血病细胞增殖的抑制作用,用SRB法和集落形成法检测了药物对细胞增殖的抑制作用,流式法检测了细胞周期阻断作用。结果表明,25、50、100mg/L硒化壳聚糖作用HL60细胞48h对细胞有增殖抑制作用(P〈0.01);50、100mg/L硒化壳聚糖作用细胞48h后,G0/G1期细胞数较对照组增加了14.9%-22.0%(P〈0.05),S期细胞减少了14.3%~20.1%(P〈0.05)。可见硒化壳聚糖对人早幼粒白血病细胞增殖具有抑制作用。  相似文献   

7.
将活性基团5-取代苯基呋喃环和叔丁氨基引入酰基硫脲的分子骨架中,设计合成了8个未见文献报道的N'-叔丁氨基羰基-N-(5-取代苯基-2-呋喃甲酰基)硫脲类化合物(5a~5h),结构经元素分析、IR和 1H NMR等测试技术得到确证. 经MTT(溴化3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑)法观察,首次发现目标化合物对白血病K562细胞的增殖有明显的抑制作用. 在药物浓度为100×10-6 g/mL时,大部分目标化合物对白血病K562细胞生长的抑制率超过了70%,化合物5a对白血病K562细胞生长的抑制率达到77.14%. 其中,目标化合物5f和5h对白血病K562细胞有诱导作用,进一步的测试正在进行中.  相似文献   

8.
为研究硒化壳聚糖对NB4细胞的凋亡及周期阻断作用,用流式细胞法观察了药物对细胞的诱导凋亡及周期阻断作用。结果表明,硒化壳聚糖作用NB4细胞24 h,可剂量依赖性地诱导细胞凋亡并使G0—G1期细胞增多。提示硒化壳聚糖可诱导细胞凋亡,并对NB4细胞周期有特异性阻断作用。  相似文献   

9.
采用原子力显微镜在纳米尺度下对正常中性粒细胞与白血病细胞株K562细胞的表面形貌及细胞的硬度、粘附力进行定性定量分析.结果表明,相比正常中性粒细胞的平均粗糙度(Ra=5.31±1.52 nm),K562细胞的超微结构更为复杂,细胞表面平均粗糙度显著升高(Ra=26.54±8.01 nm).此外,细胞的生物机械特性也有显著差别:中性粒细胞的硬度为9.5±1.3 kPa,AFM针尖与中性粒细胞的非特异性粘附力为135±23.4 pN;K562细胞的硬度为3.0±0.8 kPa,AFM针尖与K562细胞的非特异性粘附力为95±15.6 pN.AFM在单细胞水平上的探测表明,中性粒细胞和K562细胞的超微结构和机械特性均有明显差异.通过对细胞表面超微结构和力学特性的探测可以诊断慢性粒细胞白血病,原子力显微镜有望成为临床肿瘤诊断的工具.  相似文献   

10.
用化学降解法制备不同分子量的壳聚糖 ,以其为原料合成了系列N 琥珀酰壳聚糖 ,然后用异硫氰酸荧光素进行荧光标记 ,再与K5 6 2肿瘤细胞共孵育 ,通过流式细胞仪检测细胞的荧光强度来确定不同分子量N 琥珀酰壳聚糖与K5 6 2肿瘤细胞间亲和性的强弱 ,为靶向抗肿瘤药物载体的研究提供初步的参考 .结果表明N 琥珀酰壳聚糖和K5 6 2肿瘤细胞间有较强的亲和性 ,随着分子量的增加 ,其亲和性逐渐减弱 .  相似文献   

11.
用MTT法测定稀土离子在不同浓度、不同培养液中,与BEL 7402和K562细胞作用不同时间,对细胞的毒性和增殖毒性。结果表明,在含10%小牛血清培养液中,仅个别稀土离子在较高浓度时对BEL 7402细胞增殖有较弱的抑制作用;对于K562细胞,稀土离子在低浓度时对细胞增殖即表现出较强的抑制作用(P<0.05)。当培养液不含小牛血清时,较低浓度的稀土离子即可抑制BEL 7402细胞的增殖(P<0 05)。  相似文献   

12.
A new synthesized benzene nitrogen mustard was converted into glycosyl donor-trichloroacetimidate that was glycosylated with p-nitrophenol(glycosyl donors) to form β-lactosyl p-nitrobenzene under the protection of acetyl in a stereoselective manner, was prepared and evaluated for its cytotoxicity towards cultured K562 cell line. Methylthiazoy tetrazolium(MTT) assay, transmission electron microscopy(TEM), flow cytometry(FCM) and immunohistochemistry were utilized to explore the mechanisms of how the compound arrests the growth of HCT-T cells. This new synthesed benzene nitrogen mustard glucoside derivate(BNMGD) presented a lower toxicity to normal cells, but is significantly more toxic to K562 cells compared with nitrogen mustard, meanwhile it can induce the apoptosis of K562 cells. These results indicate that the new synthesized BNMGD can inhibit the growth of K562 cells and induce the apoptosis, and its cytotoxicity towards cultured K562 cell line is much more effective than that of nitrogen mustard.  相似文献   

13.
《Electroanalysis》2017,29(3):828-834
A simple and rapid electrochemical aptamer cytosensor has been developed for direct detection of chronic myelogenous leukemia (CML) K562 cells based on a specific aptamer and a biotin conjugated concanavalin A (bio‐ConA) detection probe. The K562 cell could be specifically recognized by T2‐KK1B10 capture aptamer pre‐immobilized on gold modified electrode surface. Then, bio‐ConA was added in the reaction to identify K562 cell surface mannose, resulting in an aptamer‐K562 cell‐bio‐ConA sandwich complex. Finally, streptavidin conjugated alkaline phosphatase (ST‐ALP) combined with the bio‐ConA to catalyze α‐naphthyl (α‐NP) phosphate to form α‐naphthol which is highly electroactive at an operating voltage of 180 mV (vs. Ag/AgCl). Under optimum conditions, the DPV signals were proportional to the logarithm of K562 cell from 1×102 to 1×107 cells mL−1 with a detection limit of 79 cells mL−1. The cytosensor also exhibited high selectivity, stability and reproducibility. When applied to detect K562 cells in human blood samples, recoveries between 79.6 %–93.3 % were obtained, indicating the developed biosensor would be a potential alternative tool for CML K562 cell detection in real biological samples.  相似文献   

14.
In the present study we compared the proliferation behavior, the ultrastructural morphology and the glycolitic metabolism of K562 cells irradiated by low-power wide-band millimeter waves, with those of sham-exposed K562 cells (control), maintained in the same culture conditions. The gigaHertz radiation treatments, performed between 53-78 10(9) Hz, induced a noticeable inhibition of the cell proliferation that could be related to relevant ultrastructural changes. Such effects brought the irradiated cell system to lose the homeostasis and to trigger defense/reparatory mechanisms in order to reestablish a new steady state. (13)C-Nuclear magnetic resonance data on the kinetic of glucose metabolism demonstrated that the irradiated cells enhanced the glycolitic aerobic pathway, indicating that such system need to produce an extra-bioenergy. Most of the ATP synthesized served probably to perform the above processes resulting in a significant decrease of the proliferation rate without significant cell death increment.  相似文献   

15.
Cancer is one of the most common malignant diseases in the world. Hence, there is an urgent need to search for novel drugs with antitumor activity against cancer cells. AMP-17, a natural antimicrobial peptide derived from Musca domestica, has antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and fungi. However, its antitumor activity and potential mechanism of action in cancer cells remain unclear. In this study, we focused on evaluating the in vitro antitumor activity and mechanism of AMP-17 on leukemic K562 cells. The results showed that AMP-17 exhibited anti-proliferative activity on K562 cells with an IC50 value of 58.91 ± 3.57 μg/mL. The membrane integrity of K562 was disrupted and membrane permeability was increased after AMP-17 action. Further observation using SEM and TEM images showed that the cell structure of AMP-17-treated cells was disrupted, with depressions and pore-like breaks on the cell surface, and vacuolated vesicles in the cytoplasm. Furthermore, further mechanistic studies indicated that AMP-17 induced excessive production of reactive oxygen species and calcium ions release in K562 cells, which led to disturbance of mitochondrial membrane potential and blocked ATP synthesis, followed by activation of Caspase-3 to induce apoptosis. In conclusion, these results suggest that the antitumor activity of AMP-17 may be achieved by disrupting cell structure and inducing apoptosis. Therefore, AMP-17 is expected to be a novel potential agent candidate for leukemia treatment.  相似文献   

16.
Multidrug resistance is a major unresolved obstacle to successful cancer chemotherapy. It is often associated with an elevated efflux of a variety of anticancer drugs by ATP-binding cassette transporters including P-glycoprotein, BCRP and MRP1. In this study, the reversal effect of Ethyl lucidenates A on K562/A02 cells was investigated. At concentrations of 10 μM, Ethyl lucidenates A could reverse the resistance of K562/A02 to vincristine up to 7.59 folds. Mechanistically, Ethyl lucidenates A could increase the intracellular accumulation of vincristine in K562/A02 cells through inhibiting the P-glycoprotein mediated drug-transport activity by rhodamine accumulation assay and cell cycle analysis. Further mechanistic investigation found that Ethyl lucidenates A did not alter P-glycoprotein expression. In conclusion, Ethyl lucidenates A could reverse the multidrug resistance of K562/A02 cells via its influence on P-glycoprotein drug-transport activity and thus, be a potential multidrug resistance reversal agent.  相似文献   

17.
K562 is the chronic myelogenous leukemia (CML)-derived cell line that expresses high levels of chimeric oncoprotein Bcr-Abl. The deregulated (permanent) kinase activity of Bcr-Abl leads to continuous proliferation of K562 cells and their resistance to the apoptosis promotion by conventional drugs. The photodynamic treatment (PDT) based on the application of 5-aminolevulinic acid (ALA) and irradiation with blue light (ALA-PDT) resulted in the suppression of K562 cells proliferation. It was followed by a necrosis-like cell death [K. Kuzelová, D. Grebenová, M. Pluskalová, I. Marinov, Z. Hrkal, J. Photochem. Photobiol. B 73 (2004) 67-78]. ALA-PDT led to the perturbation of the Hsp90/p23 multichaperone complex of which the Bcr-Abl is the client protein. Bcr-Abl protein was suppressed whereas the bcr-abl mRNA level was not affected. Further on, we observed several changes in the cytoskeleton organization. We detected ALA-PDT-mediated disruption of filamental actin structure using FITC-Phalloidin staining. In connection with this we uncovered certain cytoskeleton organizing proteins involved in the cell response to the treatment. Among these proteins, Septin2, which plays a role in maintaining actin bundles, was suppressed. Another one, PDZ-LIM domain protein 1 (CLP36) was altered. This protein acts as an adaptor molecule for LIM-kinase which phosphorylates and thus inactivates cofilin. Cofilin was indeed dephosphorylated and could thus be activated and operate as an actin-depolymerizing factor. We propose the scheme of molecular response of K562 cells to ALA-PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号