首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A vibrational assignment of the anaesthetic sevoflurane, (CF(3))(2)CHOCH(2)F, is proposed and its interaction with the aromatic model compound benzene is studied using vibrational spectroscopy of supersonic jet expansions and of cryosolutions in liquid xenon. Ab initio calculations, at the MP2/cc-pVDZ and MP2/aug-cc-pVDZ levels, predict two isomers for the 1?:?1 complex, one in which the near-cis, gauche conformer of sevoflurane is hydrogen bonded through its isopropyl-hydrogen atom, the other in which the same conformer is bonded through a bifurcated hydrogen bond with the fluoromethyl hydrogen atoms. From the experiments it is shown that the two isomers are formed, however with a strong population dominance of the isopropyl-bonded species, both in the jet and liquid phase spectra. The experimental complexation enthalpy in liquid xenon, ΔH(o)(LXe), of this species equals -10.9(2) kJ mol(-1), as derived from the temperature dependent behaviour of the cryosolution spectra. Theoretical complexation enthalpies in liquid xenon were obtained by combining the complete basis set extrapolated complexation energies at the MP2/aug-cc-pVXZ (X = D,T) level with corrections derived from statistical thermodynamics and Monte Carlo Free Energy Perturbation calculations, resulting in a complexation enthalpy of -11.2(3) kJ mol(-1) for the isopropyl-bonded complex, in very good agreement with the experimental value, and of -11.4(4) kJ mol(-1), for the fluoromethyl-bonded complex. The Monte Carlo calculations show that the solvation entropy of the isopropyl-bonded species is considerably higher than that of the fluoromethyl-bonded complex, which assists in explaining its dominance in the liquid phase spectra.  相似文献   

2.
The microwave spectra of four isotopologues of the CHBrF(2)···HCCH weakly bound dimer have been measured in the 6-18 GHz region using chirped-pulse and Balle-Flygare Fourier-transform microwave spectroscopy. Spectra of (13)CH(79)BrF(2) and (13)CH(81)BrF(2) monomers have also been measured, and spectroscopic constants are reported. Measurement of spectra for the (79)Br and (81)Br isotopologues of CHBrF(2) complexed with both (12)C(2)H(2) and (13)C(2)H(2) have allowed the determination of a structure with C(s) symmetry for this complex. CHBrF(2) interacts with the triple bond of acetylene via a C-H···π contact (R(H···π) = 2.670(8) ?) with the Br atom lying in the ab plane, located 3.293(40) ? from a hydrogen atom of the HCCH molecule. The structure of CHBrF(2)···HCCH has been compared with recently studied related acetylene complexes, including a comparison with (and further structural analysis of) the CHClF(2)···HCCH complex.  相似文献   

3.
Perfluorinated cycloparaphenylenes (F-[n]CPP, n = 5–8), boron nitride nanohoop (F-[5]BNNH), and buckybowls (F-BBs) were proposed as anion receptors via anion-π interactions with halide anions (Cl, Br and I), and remarkable binding strengths up to −294.8 kJ/mol were computationally verified. The energy decomposition approach based on the block-localized wavefunction method, which combines the computational efficiency of molecular orbital theory and the chemical intuition of ab initio valence bond theory, was applied to the above anion-π complexes, in order to elucidate the nature and selectivity of these interactions. The overall attraction is mainly governed by the frozen energy component, in which the electrostatic interaction is included. Remarkable binding strengths with F-[n]CPPs can be attributed to the accumulated anion-π interactions between the anion and each conjugated ring on the hoop, while for F-BBs, additional stability results from the curved frameworks, which distribute electron densities unequally on π-faces. Interestingly, the strongest host was proved to be the F-[5]BNNH, which exhibits the most significant anisotropy of the electrostatic potential surface due to the difference in the electronegativities of nitrogen and boron. The selectivity of each host for anions was explored and the importance of the often-overlooked Pauli exchange repulsion was illustrated. Chloride anion turns out to be the most favorable anion for all receptors, due to the smallest ionic radius and the weakest destabilizing Pauli exchange repulsion.  相似文献   

4.
Using FTIR and Raman spectroscopy, the formation of halogen bonded complexes of the trifluorohalomethanes CF(3)Cl, CF(3)Br and CF(3)I with ethene and propene dissolved in liquid argon has been investigated. For CF(3)Br and CF(3)I, evidence was found for the formation of C-X···π halogen bonded 1:1 complexes. At a higher ratio of CF(3)I/propene, weak absorptions due to a 2:1 complex were also observed. Using spectra recorded at different temperatures, the complexation enthalpies for the complexes were determined to be -5.3(2) kJ mol(-1) for CF(3)Br·ethene, -7.5(2) kJ mol(-1) for CF(3)I·ethene, -5.6(1) kJ mol(-1) for CF(3)Br·propene, -8.8(1) kJ mol(-1) for CF(3)I·propene and -16.5(6) kJ mol(-1) for (CF(3)I·)(2)propene. The complexation enthalpies of the hydrogen bonded counterparts, with CF(3)H as the Lewis acid, were determined to be -4.6(4) kJ mol(-1) for CF(3)H·ethene and -5.1(2) kJ mol(-1) for CF(3)H·propene. For both hydrogen bonded complexes, a blue shift, by +4.8 and +4.0 cm(-1), respectively, was observed for the C-H stretching mode. The results from the cryospectroscopic study are compared with ab initio calculations at the MP2/aug-cc-pVDZ(-PP) level.  相似文献   

5.
The double cyclopalladated complex with azobenzene, μ-[(E)-1,2-diphenyldiazene-C2,8, N1,2]-di-[chloro(dimethylsulfoxide)palladium(II)]; (DMSO)PdCl(μ-C6H4NNC6H4)(DMSO)PdCl (1) and its analogous complex with DMF as ancillary ligand, (DMF)PdCl(μ-C6H4NNC6H4)(DMF)PdCl; μ-[(E)-1,2-diphenyldiazene-C2,8,N1,2]-di-[chloro(dimethylformamide)palladium(II)] (2a) were synthesized and the function of cyclopalladated moiety in molecular assembling in the solid state is illustrated by their crystal packings. The polymorphism of 2a and 2b is discussed. The crystal structures reveal assemblies with molecular components self-organized by C-H?Cl-Pd hydrogen bonds, π?π, and C-H?π interactions. The double cyclopalladated complexes of azobenzene, with two Pd-Cl moieties participating in the hydrogen bond formation and π-conjugated system involved in the π?π or C-H?π interactions, represent a new class of building blocks for construction of solid state supramolecular assemblies.  相似文献   

6.
Zhang  Yong-Hui  Li  Yu-Liang  Yang  Jianming  Zhou  Pan-Pan  Xie  Kefeng 《Structural chemistry》2020,31(1):97-101

Physisorption of bromopentafluorobenzene (C6F5Br) on graphene can occur due to the unique σ-hole and π-hole characters of C6F5Br and the rich π-electrons region of graphene, leading to the formation of three types of π-hole···π and σ-hole···π interactions. The π-hole···π interactions are even stronger than the σ-hole···π interactions. The property of graphene was significantly affected by such physisorption.

  相似文献   

7.
The cation···π interactions of alkali metal cations (Li+, Na+, and K+) with five-membered heteroaromatic rings [furan(C4H4O), thiophene(C4H4S), pyrrole(C4H5N)] were examined by high level ab initio calculations, to investigate the different roles of C4H4O, C4H4S, and C4H5N as the electron donor, the influential factors that affect these interactions, the nature of this kind of cation···π interaction, and to determine topological and energetical properties to characterize these interactions. The sulfur atom in C4H4S plays a certain role in the cation···π interactions except the C–C π bond, which is different from C4H4O and C4H5N. The size of cation and the character of heteroaromatic ring are two influential factors that affect the cation···π interactions. The studied cation···π interactions can be classified as “closed-shell” and noncovalent interactions. The electron density and its Laplacian at the bond critical points and ring critical points generated upon complexation are useful measurements for the strength of cation···π interactions.  相似文献   

8.
The (gas-phase) MP2/6-31G*(0.25) π···π stacking interactions between the five natural bases and the aromatic amino acids calculated using (truncated) monomers composed of conjugated rings and/or (extended) monomers containing the biological backbone (either the protein backbone or deoxyribose sugar) were previously compared. Although preliminary energetic results indicated that the protein backbone strengthens, while the deoxyribose sugar either strengthens or weakens, the interaction calculated using truncated models, the reasons for these effects were unknown. The present work explains these observations by dissecting the interaction energy of the extended complexes into individual backbone···π and π···π components. Our calculations reveal that the total interaction energy of the extended complex can be predicted as a sum of the backbone···π and π···π components, which indicates that the biological backbone does not significantly affect the ring system through π-polarization. Instead, we find that the backbone can indirectly affect the magnitude of the π···π contribution by changing the relative ring orientations in extended dimers compared with truncated dimers. Furthermore, the strengths of the individual backbone···π contributions are determined to be significant (up to 18 kJ mol(-1)). Therefore, the origin of the energetic change upon model extension is found to result from a balance between an additional (attractive) backbone···π component and differences in the strength of the π···π interaction. In addition, to understand the effects of the biological backbone on the stacking interactions at DNA-protein interfaces in nature, we analyzed the stacking interactions found in select DNA-protein crystal structures, and verified that an additive approach can be used to examine the strength of these interactions in biological complexes. Interestingly, although the presence of attractive backbone···π contacts is qualitatively confirmed using the quantum theory of atoms in molecules (QTAIM), QTAIM electron density analysis is unable to quantitatively predict the additive relationship of these interactions. Most importantly, this work reveals that both the backbone···π and π···π components must be carefully considered to accurately determine the overall stability of DNA-protein assemblies.  相似文献   

9.
A rare anion-π complex between bromide and a neutral receptor is reported and related receptor systems are studied with a series of anions. The interaction is observed in the solid state and in solution, and further evidence for it is obtained by a computational study.  相似文献   

10.
Abstract

Spectroscopic and single crystal X-ray diffraction studies of coordination compounds of CoII, NiII, ZnII, and PdII with phenylsulfonyl imidazole and benzimidazole derivatives (2-mfsiz, 2-mfsbz) were performed. The relevance of non-covalent interactions on the stabilization of intra and intermolecular arrangements in the ligands and their coordination compounds was investigated. The imidazole 2-mfsiz ligand presents two enantiomeric conformers, where the ethylphenylsulfone moiety stabilizes intermolecular lone pair···π (S–O···π(phe)) and H···π contacts, while its tetrahedral coordination compounds, [M(2-mfsiz)2X2] (M2+?=?Co, Ni, Zn; X?=?Cl, Br) showed intramolecular lone pair···π interactions (S–O···π(iz)). On the other hand, compounds [Cu2(2-mfsiz)22-AcO)4] and trans-[Pd(2-mfsiz)2Cl2] do not present lone pair···π interactions due to the metal ion geometry (square base pyramidal or square planar), which leads to formation of π(iz)···π(phe) interactions. For the benzimidazole ligand 2-mfsbz, an intramolecular, H(phe)···π(bz) contact was observed, remaining in its tetrahedral and octahedral coordination compounds, [M(2-mfsbz)2X2] (M2+?=?Co, Zn; X?=?Cl, Br, NO3). This interaction limits the free rotation of the ethylphenylsulfone moiety for stabilization of an intermolecular lone pair···π interaction (S–O···π(iz)). The dimeric [Zn2(2-mfsiz)22-AcO)4] compound has a π(bz)···π(phe) contact. Theoretical calculations confirmed the non-covalent interactions in the ligands and their coordination compounds.  相似文献   

11.
Binding affinities of a cyclic β-peptoid to amino acids were studied using the density functional theory (DFT) at the B3LYP/6-311G(d,p) level after the basis set superior error (BSSE). The host molecule possesses binding ability to amino acids since the binding energies of the complexes formed are negative. The complexes were stabilized via hydrogen bonds between the host and the guest molecules. Based on the B3LYP/6-31G(d) optimized geometries, electronic spectra of the complexes were calculated using the INDO/CIS method. 13C NMR spectra and nucleus-independent chemical shift (NICS) values of the complexes were computed at the B3LYP/6-31G(d) level. Carbon atoms in the carboxyl groups of the complexes are shifted downfield relative to those of the host. Some complexes exhibit aromaticity although the host shows anti-aromaticity. Formation of hydrogen bonds leads to cyclic current formation in these complexes.  相似文献   

12.
The structure of the CH(2)ClF···HCCH dimer has been determined using both chirped-pulse and resonant cavity Fourier-transform microwave spectroscopy. The complex has C(s) symmetry and contains both a double C-H···π interaction, in which one π-bond acts as acceptor to two hydrogen atoms from the CH(2)ClF donor, and a weak C-H···Cl interaction, with acetylene as the donor. Analysis of the rotational spectra of four isotopologues (CH(2)(35)ClF···H(12)C(12)CH, CH(2)(37)ClF···H(12)C(12)CH, CH(2)(35)ClF···H(13)C(13)CH, and CH(2)(37)ClF-H(13)C(13)CH) has led to a structure with C-H···π distances of 3.236(6) ? and a C-H···Cl distance of 3.207(22) ?, in good agreement with ab initio calculations at the MP2/6-311++G(2d,2p) level. Both weak contacts are longer than those observed in similar complexes containing a single C-H···π interaction that lies in the C(s) plane; however, this appears to be the first double C-H···π contact to be studied by microwave spectroscopy, so there is little data for direct comparison. The rotational and chlorine nuclear quadrupole coupling constants for the most abundant isotopologue are: A = 5262.899(14) MHz, B = 1546.8074(10) MHz, C = 1205.4349(7) MHz, χ(aa) = 28.497(5) MHz, χ(bb) = -65.618(13) MHz, and χ(cc) = 37.121(8) MHz.  相似文献   

13.
The microwave spectra of four isotopologues of the CHClF(2)-HCCH dimer have been measured and used to determine the structure of the complex. An initial scan over the 7-18 GHz region using the chirped-pulse microwave spectrometer at the University of Virginia provided initial assignments of the (35)Cl and (37)Cl isotopologues, with two additional H(13)C(13)CH species assigned using the resonant cavity Balle-Flygare microwave spectrometer at Eastern Illinois University. For the most abundant isotopologue, the rotational constants and quadrupole coupling constants are: A = 3301.21(4) MHz, B = 1353.4268(19) MHz, C = 1153.7351(18) MHz, χ(aa) = 34.681(12) MHz, χ(bb) = -69.70(3) MHz, χ(cc) = 35.02(2) MHz and χ(ab) = -8.8(3) MHz, in good agreement with ab initio calculations at the MP2/6-311++G(2d,2p) level. The alignment of CHClF(2) with respect to acetylene reveals a C-Hπ interaction, with a secondary C-ClH-C interaction also present between the two monomers. The fitted distance between the CHClF(2) hydrogen atom and the center of the triple bond is 2.730(6) ?, the distance between the chlorine atom and the acetylenic hydrogen is 3.061(38) ?, and the C-Hπ angle is 148.2(6)°. In addition, the centrifugal distortion constants give an estimate of the binding energy for the weak interaction of about 4.9(5) kJ mol(-1), in reasonable agreement with several similar complexes.  相似文献   

14.
The intermolecular potentials for hexafluorobenzene (HFBz) and 1,3,5-trifluorobenzene (TFBz) interacting with alkali (M(+); M = Li, Na, K, Rb, Cs) and halogen (X(-); X = F, Cl, Br, I) ions are provided as a combination of electrostatic and nonelectrostatic terms. The ion-HFBz and ion-TFBz electrostatic components are formulated as a sum of Coulombic potentials associated with the interactions between the ion charge and point charges on the molecular frame, whose distributions are consistent with the permanent quadrupole moment of HFBz and TFBz, respectively. The corresponding nonelectrostatic components are represented as a sum of effective potential functions, each one having a specific physical meaning, related to ion-molecular bond pair interactions. In the present paper, we test the transferability of the ion-bond potential parameters. Moreover, the powerfulness of the model is analyzed by comparing predicted binding energies and equilibrium geometries for the family of M(+)-HFBz, X(-)-HFBz, M(+)-TFBz, and X(-)-TFBz systems with available ab initio results.  相似文献   

15.
The X-ray diffraction analysis of two co-crystals, 1·2 (aldimines 1 and 2) and 3·4 (aldimines 3 and 4), reveals that there are strong phenyl-perfluorophenyl π-π stacking and intermolecular hydrogen bonding interactions. The new perfluoroaryl-aryl face-to-face interaction of the crystalline aldimines provides a design motif for a new class of self-assembling system.  相似文献   

16.
The MP2/6-311++G(d,p) calculations were performed on several hydrogen-bonded systems. Different complexes were taken into account to analyze various types of hydrogen bonds, possessing different types of proton donors and proton acceptors as well as characterized by the broad range of the interaction energy. The Quantum Theory of Atoms in Molecules is applied. The results of the hybrid variational-perturbational approach are discussed. The unique properties of hydrogen bonds, where π-electrons act as the proton acceptor (X-H···π), are analyzed, and these interactions are compared with the other types of hydrogen bonds, mainly with C-H···Y interactions. It is shown that for X-H···π systems the ellipticity at the bond critical point of the proton···acceptor interaction is much greater than for the other types of hydrogen bonds. However, both X-H···π and C-H···Y interactions are characterized by the dominance of the dispersive energy.  相似文献   

17.
Contacts between aromatic surfaces and saccharide CH groups are common motifs in natural carbohydrate recognition. These CH-π interactions are modeled in "synthetic lectins" which employ oligophenyl units as apolar surfaces. Here we report the synthesis and study of new synthetic lectins with fluoro- and hydroxy-substituted biphenyl units, designed to explore the role of π-electron density in carbohydrate CH-π interactions. We find evidence that recognition can be moderated through electronic effects but that other factors such as cavity hydration are also important and sometimes predominant in determining binding strengths.  相似文献   

18.
19.
The higher basicity of carbenes has been exploited with H···π non-bonding interactions to design a new class of organic superbases. This simple molecular architecture gains a basicity comparable to some of the known functionalized nitrogen superbases and phosphazenes.  相似文献   

20.
Flexibility in pseudorotaxanes and interlocked molecules that rely on interactions between π-donor-acceptor subunits provides access to folded structures reminiscent of the tertiary structure of proteins. While they have been described before, only now have we been able to quantify one such tertiary structure by making use of pseudorotaxanes designed for the purpose. Here, the enhanced stability of a pseudorotaxane inside a folded structure is measured to be ΔG = ca. 0.5 kcal mol(-1). The tertiary structure is stabilized by a charge-transfer interaction between a tetrathiafulvalene-based π-donor that can situate alongside a π-accepting paraquat-based macrocycle by folding of a flexible linker. At room temperature, it was estimated that 70% of the pseudorotaxanes examined here exist in their folded state. This quantitative information is critical for the creation of interlocked molecular machines that have predictable energetics and structures and for revealing a complexity approaching biological molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号