首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ligands KS(2)CN(Bz)CH(2)CH(2)N(Bz)CS(2)K (K(2)L(1)), N(CH(2)CH(2)N(Me)CS(2)Na)(3) (Na(3)L(2)), and the new chelates {(CH(2)CH(2))NCS(2)Na}(3) (Na(3)L(3)) and {CH(2)CH(2)N(CS(2)Na)CH(2)CH(2)CH(2)NCS(2)Na}(2) (Na(4)L(4)), react with the gold(I) complexes [ClAu(PR(3))] (R = Me, Ph, Cy) and [ClAu(IDip)] to yield di-, tri-and tetragold compounds. Larger metal units can also be coordinated by the longer, flexible linker, K(2)L(1). Thus two equivalents of cis-[PtCl(2)(PEt(3))(2)] react with K(2)L(1) in the presence of NH(4)PF(6) to yield the bimetallic complex [L(1){Pt(PEt(3))(2)}(2)](PF(6))(2). The compounds [NiCl(2)(dppp)] and [MCl(2)(dppf)] (M = Ni, Pd, Pt; dppp = 1,3-bis(diphenylphosphino)propane, dppf = 1,1'-bis(diphenylphosphino)ferrocene) also yield the dications, [L(1){Ni(dppp)}(2)](2+) and [L(1){Ni(dppf)}(2)](2+) in an analogous fashion. In the same manner, reaction between [(L'(2))(AuCl)(2)] (L'(2) = dppm, dppf; dppm = bis(diphenylphosphino)methane) and KS(2)CN(Bz)CH(2)CH(2)N(Bz)CS(2)K yield [L(1){Au(2)(L'(2))}(2)]. The molecular structures of [L(1){M(dppf)}(2)](PF(6))(2) (M = Ni, Pd) and [L(1){Au(PR(3))}(2)] (R = Me, Ph) are reported.  相似文献   

2.
The reactions of the iridaphosphirene complex [Ir{=C(tBu)P(Cy)}(CO)(PPh3)2] (Cy = cyclohexyl) with either [AuCl(tht)] (tht = tetrahydrothiophene) or AgCl result in the products [Ir{=C(tBu)P[M(Cl)](Cy)}(CO)(PPh3)2], M = Au or Ag. The aurated product can additionally be obtained on reaction of the iridaphosphirene with [AuCl(CNtBu)], via loss of the isocyanide ligand. Treatment of [Ir{=C(tBu)P(Cy)}(CO)(PPh3)2] with [AuCl(PPh3)] in the presence of silver triflate leads to the isolation of the salt, [Ir{=C(tBu)P[Au(PPh3)](Cy)}(CO)(PPh3)2][SO3CF3]. Reaction of the iridaphosphirene with PhHgCl in the absence or presence of silver triflate affords the mercurated species [Ir{=C(tBu)P[Hg(Ph)](Cy)}(CO)(PPh3)2]X, X = Cl or CF3SO3, respectively. The former exhibits a weakly mercury-coordinated chloride ion. The X-ray crystal structures of all of the complexes are described.  相似文献   

3.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

4.
A series of cationic lanthanide porphyrinate complexes of the general formula [(Por)Ln(H(2)O)(3)](+) (Ln(3+)=Yb(3+) and Er(3+)) were synthesized in moderate yields through the interaction of meso-pyridyl-substituted porphyrin free bases (H(2)Por) with [Ln{N(SiMe(3))(2)}(3)]·x[LiCl(thf)(3)], and the corresponding neutral derivatives [(Por)Ln(L(OMe))] (L(OMe)(-)=[(η(5)-C(5)H(5))Co{P(=O)(OMe)(2)}(3)](-)) were also prepared from [(Por)Ln(H(2)O)(3)](+) by the addition of the tripodal anion, L(OMe)(-), an effective encapsulating agent for lanthanide ions. Furthermore, the water-soluble lanthanide(III) porphyrinate complexes--including [(cis-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (cis-DMPyDPP=5,10-bis(N-methylpyridinium-4'-y1)-15,20-di(phenyl)porphyrin), [(trans-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (trans-DMPyDPP=5,15-bis(N-methylpyridinium-4'-y1)-10,20-di(phenyl)porphyrin), [(TMPyP)Yb(L(OMe))]I(4), and [(TMPyP)Er(L(OMe))]I(4) (TMPyP=tetrakis(N-methylpyridinium-4-y1)porphyrin)--were obtained by methylation of the corresponding complexes with methyl iodide and unambiguously characterized. The binding interactions and photocleavage activities of the water-soluble lanthanide(III) porphyrinate complexes towards DNA were investigated by UV-visible, fluorescence, and near-infrared luminescence spectroscopy, as well as circular dichroism and gel electrophoresis.  相似文献   

5.
Reactions between methyldiphenylphosphane selenide, SePPh(2)Me, and different group 11 metal starting materials {CuCl, [CuNO(3)(PPh(3))(2)], AgOTf, [AgOTf(PPh(3))] (OTf = OSO(2)CF(3)), [AuCl(tht)], [Au(C(6)F(5))(tht)] and [Au(C(6)F(5))(3)(tht)] (tht = tetrahydrothiophene)} were performed in order to obtain several new species with metal-selenium bonds. The new complexes [CuCl(SePPh(2)Me)] (1), [AgOTf(SePPh(2)Me)] (2), [AuCl(SePPh(2)Me)] (5), [Au(C(6)F(5))(SePPh(2)Me)] (6) and [Au(C(6)F(5))(3)(SePPh(2)Me)] (7) were isolated and structurally characterized in solution by multinuclear NMR spectroscopy ((1)H, (31)P, (77)Se and (19)F where appropriate). Solid products were isolated also from the reactions between SePPh(2)Me and [CuNO(3)(PPh(3))(2)] or [AgOTf(PPh(3))], respectively. NMR experiments, including low temperature (1)H and (31)P NMR, revealed for them a dynamic behaviour in solution, involving the transfer of selenium from PPh(2)Me to PPh(3). In case of the isolated silver(i) containing solid an equilibrium between, respectively, monomeric [AgOTf(PPh(3))(SePPh(2)Me)] (3) and [AgOTf(PPh(2)Me)(SePPh(3))] (4), and dimeric [Ag(PPh(3))(μ-SePPh(2)Me)](2)(OTf)(2) (3a) and [Ag(PPh(2)Me)(μ-SePPh(3))](2)(OTf)(2) (4a) species was observed in solution. In case of the isolated copper(i) containing solid the NMR studies brought no clear evidence for a similar behaviour, but it can not be excluded in a first stage of the reaction. However the transfer of selenium between the two triorganophosphanes takes place also in this case, but the NMR spectra suggest that the final reaction mixture contains the free triorganophospane selenides SePPh(2)Me and SePPh(3) as well as the complex species [CuNO(3)(PPh(3))(2)], [CuNO(3)(PPh(2)Me)(2)] and [CuNO(3)(PPh(3))(PPh(2)Me)] in equilibrium. Single-crystal X-ray diffraction studies revealed monomeric structures for the gold(I) 6 and gold(III) 7 complexes. In case of compound 6 weak aurophilic gold(I)···gold(I) contacts were also observed in the crystal. DFT calculations were performed in order to understand the solution behaviour of the silver(I) and copper(I) species containing both P(III) and P(V) ligands, to verify the stability of possible dimeric species and to account for the aurophilic interactions found for 6. In addition, the nature of the electronic transitions involved in the absorption/emission processes observed for 6 and 7 in the solid state were also investigated by means of TD-DFT calculations.  相似文献   

6.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

7.
The reaction of the functional diphosphine 1 [1 = 2-(bis(diphenylphosphino)methyl-oxazoline] with [PtCl(2)(NCPh)(2)] or [PdCl(2)(NCPh)(2)], in the presence of excess NEt(3), affords [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pt(1(-H)-P,P)(2)], 3a) and [Pd{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pd(1(-H)-P,P)(2)], 3b), respectively, in which 1(-H) is (oxazoline-2-yl)bis(diphenylphosphino)methanide. The reaction of 3b with 2 equiv of [AuCl(tht)] (tht = tetrahydrothiophene) afforded [Pd(1(-H)-P,N)(2)(AuCl)(2)] (4), as a result of the opening of the four-membered metal chelate since ligand 1(-H), which was P,P-chelating in 3b, behaves as a P,N-chelate toward the Pd(II) center in 4 and coordinates to Au(I) through the other P donor. In the absence of a base, the reaction of ligand 1 with [PtCl(2)(NCPh)(2)] in MeCN or CH(2)Cl(2) afforded the isomers [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}(2)]Cl(2) ([Pt(1'-P,P)(2)]Cl(2) (5), 1' = 2-(bis(diphenylphosphino)methylene)-oxazolidine) and [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}{Ph(2)PCH═C(OCH(2)CH(2)N(PPh(2))}]Cl(2) ([Pt(1'-P,P)(2'-P,P)]Cl(2) (6), 2' = (E)-3-(diphenylphosphino)-2-((diphenylphosphino)methylene)oxazolidine]. The P,P-chelating ligands in 5 result from a tautomeric shift of the C-H proton of 1 to the nitrogen atom, whereas the formation of one of the P,P-chelates in 6 involves a carbon to nitrogen phosphoryl migration. The reaction of 5 and 6 with a base occurred by deprotonation at the nitrogen to afford 3a and [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PCH═COCH(2)CH(2)N(PPh(2))}]Cl ([Pt(1(-H)-P,P)(2'-P,P)]Cl (7)], respectively. In CH(2)Cl(2), an isomer of 3a, [Pt{Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PC(PPh(2))═COCH(2)CH(2)N}] ([Pt(1(-H)-P,P)(1(-H)-P,N)] (8)), was obtained as a side product which contains ligand 1(-H) in two different coordination modes. Complexes 3b·4CH(2)Cl(2), 4·CHCl(3), 6·2.5CH(2)Cl(2), and 8·CH(2)Cl(2) have been structurally characterized by X-ray diffraction.  相似文献   

8.
Addition of isonicotinic acid NC(5)H(4)CO(2)H (or isonicH) to [Pt(dppf)(MeCN)(2)](2+)2OTf(-)(dppf = 1,1'-bis(diphenylphosphino)ferrocene, OTf = triflate) affords a mixture of the homometallic molecular square [Pt(4)(dppf)(4)(mu-O(2)CC(5)H(4)N)(4)](4+)4OTf(-), 1 and its precursor intermediate [Pt(dppf)(eta(1)-NC(5)H(4)CO(2)H)(2)](2+)2OTf(-), 2. The latter captures [Pd(dppf)(MeCN)(2)](2+)2OTf(-) to give a heterometallic square, [Pt(2)Pd(2)(dppf)(4)(mu-O(2)CC(5)H(4)N)(4)](4+)4OTf(-), 3. Slight skeletal modification of the ligand leads to different assemblies. This is illustrated by the addition of NC(5)H(4)CH(2)CO(2)H.HCl to [Pt(dppf)(MeCN)(2)](2+)2OTf(-) to give [PtCl(dppf)(NC(5)H(4)CH(2)CO(2)H)](+)OTf(-), 4, which reacts with another equivalent of AgOTf to yield the dibridged complex [Pt(2)(dppf)(2)(mu-NC(5)H(4)CH(2)CO(2))(2)](2+)2OTf(-), 5. All complexes, with the exception of , have been structurally characterized by single-crystal X-ray crystallography. Complexes 2 and 4 are potential precursors to further molecular topologies.  相似文献   

9.
The reaction of the phosphine thiosemicarbazone ligands HLPH and HLPMe with Au(I) ions yields the gold complexes [Au(3)(HLPH)(2)Cl(2)]Cl·2MeOH (1·2MeOH) and [Au(2)(HLPMe)Cl(2)] (2). The structures determined by X Ray diffraction, [Au(3)(HLPH)(2)Cl(2)]Cl·4MeOH (1·4MeOH) and [Au(2)(HLPMe)Cl(2)](2) (2), are the first examples of gold(I) thiosemicarbazone clusters showing aurophilicity. The structure of the trinuclear cation 1 contains the Au(1) atom located in an inversion centre, being connected to another gold(I) atom, Au(2), through a phosphino thiosemicarbazone molecule which acts as a S,P-bridging ligand. Additionally, every gold(I) atom in the trinuclear cation 1 assembles into trinuclear linear cluster units by means of close gold-gold interactions, being connected through the crystal cell in a 2D zigzag mode. The crystal structure of [Au(2)(HLPMe)Cl(2)](2) (2) contains one discrete molecule [(AuCl)(2)(HLPMe)] in the asymmetric unit, which is further assembled into tetranuclear [(AuCl)(2)(HLPMe)](2) units by means of close gold-gold interactions. Both clusters are highly luminescent in solution.  相似文献   

10.
A series of L(2) = diimine (Bian = bis(3,5-diisopropylphenylimino)acenapthene, Bu(t)(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridine) supported aqua, hydroxo, oxo, amido, imido, and mixed complexes have been prepared. Deprotonation of [L(2)Pt(mu-OH)](2)(2+) with 1,8-bis(dimethylamino)naphthalene, NaH, or KOH yields [(L(2)Pt)(2)(mu-OH)(mu-O)](+) as purple (Bian) or red (Bu(t)(2)bpy) solids. Excess KOH gives dark blue [(Bian)Pt(mu-O)](2). MeOTf addition to [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-O)](+) gives [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-OMe)](2+) while [(Bian)Pt(mu-O)](2) yields [(Bian)(2)Pt(2)(mu-OMe)(mu-O)](+). Treatment of [(Bian)Pt(mu-O)](2) with "(Ph(3)P)Au(+)" gives deep purple [(Bian)(2)Pt(2)(mu-O)(mu-OAuPPh(3))](+) while (COD)Pt(OTf)(2) gives a low yield of [(Bian)Pt(3)(mu-OH)(3)(COD)(2)](OTf)(3). Ni(Bu(t)(2)bpy)Cl(2) and [(Ph(3)PAu)(3)(mu-O)](+) in a 3 : 2 ratio yield red [Ni(3)(Bu(t)(2)bpy)(3)(mu-O)(2)](2+). M(Bu(t)(2)bpy)Cl(2) (M = Pd, Pt) and [(Ph(3)PAu)(3)(mu-O)](+) give [M(Bu(t)(2)bpy)(mu-OAuPPh(3))](2)(2+) and [Pd(4)(Bu(t)(2)bpy)(4)(mu-OAuPPh(3))](3+). Addition of ArNH(2) to [M(Bu(t)(2)bpy)(mu-OH)](2)(2+) (M = Pd, Pt) gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NHAr)(mu-OH)](2+) (Ar = Ph, 4-tol, 4-C(6)H(4)NO(2)) and [M(Bu(t)(2)bpy)(mu-NHAr)](2)(2+) (Ar = Ph, tol). Deprotonation of [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-OH)](2+) with 1,8-bis(dimethylamino)naphthalene or NaH gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-O)](+). Deprotonation of [Pt(Bu(t)(2)bpy)(mu-NH-tol)](2)(2+) with KOBu(t) gives deep green [Pt(Bu(t)(2)bpy)(mu-N-tol)](2). The triflate complexes M(Bu(t)(2)bpy)(OTf)(2) (M = Pd, Pt) are obtained from M(Bu(t)(2)bpy)Cl(2) and AgOTf. Treatment of Pt(Bu(t)(2)bpy)(OTf)(2) with water gives the aqua complex [Pt(Bu(t)(2)bpy)(H(2)O)(2)](OTf)(2).  相似文献   

11.
The salts K[AuCl(2)(CN)(2)]·H(2)O (1), K[AuBr(2)(CN)(2)]·2H(2)O (2) and K[AuI(2)(CN)(2)]·?H(2)O (3) were synthesized and structurally characterized. Compound 1 crystallizes as a network of square planar [AuCl(2)(CN)(2)](-) anions separated by K(+) cations. However, 2 and 3 feature 2-D sheets built by the aggregation of [AuX(2)(CN)(2)](-) anions via weak, intermolecular X···X interactions. The mixed anion double salts K(3)[Au(CN)(2)](2)[AuBr(2)(CN)(2)]·H(2)O (4) and K(5)[Au(CN)(2)](4)[AuI(2)(CN)(2)]·2H(2)O (5) were also synthesized by cocrystallization of K[Au(CN)(2)] and the respective K[AuX(2)(CN)(2)] salts. Similarly to 2 and 3, the [Au(CN)(2)](-) and [AuX(2)(CN)(2)](-) anions form 2-D sheets via weak, intermolecular Au(I)···X and Au(I)···Au(I) interactions. In the case of 5, a rare unsupported Au(I)···Au(III) interaction of 3.5796(5) ? is also seen between the two anionic units. Despite the presence of Au(I) aurophilic interactions of 3.24-3.45 ?, neither 4 nor 5 exhibit any detectable emission at room temperature, suggesting that the presence of Au(I)···X or Au(I)···Au(III) interactions may affect the emissive properties.  相似文献   

12.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

13.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

14.
The slightly yellow polymeric complexes [Au(2)Cl(2)(P(2)pz)(3)](n), 1 x 6CHCl(3), (P(2)pz is 3,6-bis(diphenylphosphino)pyridazine) and [[Au(2)(P(2)pz)(3)](PF(6))(2)](n), 2, are prepared by the stoichiometric reaction of AuCl(tht) (tht is tetrahydrothiophene) and P(2)pz in either dichloromethane or dichloromethane/methanol, respectively. Addition of 2 equiv of AuCl(tht) to a dichloromethane solution of 1 equiv of P(2)pz generates the simple (AuCl)(2)(P(2)pz) compound, 3. Compound 3 contains nearly linear P-Au-Cl units with intermolecular Au.Au separations of 3.570 A. Au(2)I(2)(P(2)pz)(3), 4, is prepared by reacting excess NaI with 2 in a dichloromethane/methanol mixture. Characterization of 1, 2, and 4 by X-ray crystallography confirms the 2:3 gold/ligand ratio of all three complexes. The coordination polymer 1 maintains a high degree of solvation in the solid-state with three chloroform adducts hydrogen-bonded to the chloride ligand on each gold atom. These chloroform molecules are sandwiched between the two-dimensional polymeric sheets of 1. The crystal structure of 4 reveals an empty, iodide-capped metallocryptand cage with the tetrahedrally distorted gold atoms and the nitrogen atoms on the pyridazine rings directed away from the center of the cavity. No metal ion encapsulation was observed for complex 4. Complex 2 forms one-dimensional arrays of [Au(2)(P(2)pz)(2)](2+) metallomacrocycles connected to each other by a third P(2)pz ligand. The electronic absorption spectra (CH(2)Cl(2)) of 1-4 show broad, nearly featureless absorption bands that tail into the visible with pi-pi bands at 296 nm and discernible shoulders at 314 nm for 2 and 334 nm for 3. Excitation into the low energy band of 2 produces only a modest emission in solution at 540 nm (lambda(ex) 468 nm) and 493 nm (lambda(ex) 403 nm). Under identical conditions, the P(2)pz ligand also emits at 540 and 493 nm.  相似文献   

15.
Reactions of a gold(i) thiolate complex [Au(Tab)(2)](2)(PF(6))(2) (Tab = 4-(trimethylammonio)benzenethiolate) with equimolar 1,2-bis(diphenylphosphine)ethane (dppe), 1,3-bis-(diphenylphosphine)propane (dppp) or 1,4-bis-(diphenylphosphine)butane (dppb) in MeOH-DMF-CH(2)Cl(2) gave rise to three polymeric complexes [Au(2)(Tab)(2)(dppe)](2)(PF(6))(4)·2MeOH (1·2MeOH), [Au(2)(Tab)(2)(dppp)]Cl(2)·0.5MeOH·4H(2)O (2·0.5MeOH·4H(2)O), and [Au(4)(μ-Tab)(2)(Tab)(2)(dppb)](PF(6))(4)·4DMF (3·4DMF), respectively. Analogous reaction of 1 with dppb in DMF/C(2)H(4)Cl(2) produced one tetranuclear complex [Au(2)(μ-Tab)(Tab)(2)](2)Cl(4)·2DMF·4H(2)O (4·2DMF·4H(2)O). Complexes 1-4 were characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H and (31)P{(1)H} NMR and single crystal X-ray analysis. Compounds 1 and 2 consist of [Au(Tab)](2) dimeric fragments that are bridged by dppe or dppp ligands to form a 1D linear chain extending along the a axis. For 3, each [Au(4)(Tab)(2)(μ-Tab)(2)] fragment is linked by a pair of dppb ligands to afford another 1D chain extending along the c axis. For 4, the four [Au(Tab)](+) fragments are linked by two Au-Au bonds and two doubly bridging Tab ligands to form a {[Au(Tab)](4)(μ-Tab)(2)} chair-like cyclohexane structure. Hydrogen-bonding interactions in 2 and 4 lead to the formation of interesting 2D hydrogen-bonded networks. The luminescent properties of 1-4 in solid state were also investigated.  相似文献   

16.
A series of hetero- and homometallic square complexes bridged by a photoactive 4,4'-azopyridine (AZP) or 1,2-bis(4-pyridyl)ethylene (BPE) ligand, cyclobis[[cis-(dppf)M](mu-L)(2)(fac-Re(CO)(3)Br)](OTf)(4) (M = Pd, L = trans-AZP (5); M = Pt, L = trans-AZP (7); M = Pd, L = trans-BPE (8); M = Pt, L = trans-BPE (10)), cyclo[[cis-(dppf)M](mu-L)(2)(fac-Re(CO)(3)Br)](OTf)(2) (M = Pd, L = cis-AZP (6); M = Pd, L = cis-BPE (9)), [cis-(dppf)Pd(mu-trans-AZP)](4)(OTf)(8) (11), and [cis-(dppf)Pd(mu-cis-AZP)](2)(OTf)(4) (12), where dppf is 1,1'-bis(diphenylphosphino)ferrocene and OTf is trifluoromethanesulfonate anion, were prepared by thermodynamically driven self-assembly processes. The photophysical and photochemical properties of these complexes have been investigated, and all of them show a lack of luminescence in room temperature solution. Upon irradiation at 313 or 366 nm, Pd(II)-Re(I)-containing tetranuclear squares 5, 8, and 11 undergo photoisomerization and convert to their corresponding dinuclear complexes 6, 9, and 12, whereas Pt(II)-Re(I)-based squares 7 and 10 show only slow square disassembling processes. The tetranuclear squares can be fully recovered by heating the photoisomerized solution for several hours.  相似文献   

17.
Treatment of the bridging bidentate 1,Z-bis(aminopropyl)-1,Z-dicarba-closo-dodecaborane(12)(1,Z-bis(aminopropyl)-1,Z-carborane) ligands of the type 1,Z-[H(2)N(CH(2))(3)](2)-1,Z-C(2)B(10)H(10)(L(1), Z= 7, 5) or (L(2), Z= 12, 6) with two equivalents of trans-[PtClI(2)(NH(3))](-), followed by halogen ligand metathesis with AgOTf and HCl((aq)) afforded the novel diplatinum(II)-amine species cis-[[PtCl(2)(NH(3))](2)L(n)](7(n= 1) or 8(n= 2), respectively). Similarly, the reaction of L(1) or L(2) with the labile trans-[PtCl(dmf)(NH(3))(2)](+) afforded trans-[[PtCl(NH(3))(2)](2)L(n)](OTf)(2)(9(n= 1) or 10(n= 2), respectively) in good yield and purity. However, isolation of the analogous 1,2-carborane complexes was not possible owing to decomposition reactions that led to extensive degradation of the carborane cage and reduction of the metal centre. The mixed dinuclear complex [cis-[PtCl(2)(NH(3))]-L(1)-trans-[PtCl(NH(3))(2)]]OTf (19) was prepared by treatment of the Boc-protected amine ligand 1-[(Boc)(2)N(CH(2))(3)]-7-[H(2)N(CH(2))(3)]-1,7-C(2)B(10)H(10)(L(3), 15) with trans-[PtCl(dmf)(NH(3))(2)](+) to yield trans-[PtCl(NH(3))(2)L(3)]OTf (16), followed by acid deprotection of the pendant amine group, complexation with trans-[PtClI(2)(NH(3))](-), and halogen ligand metathesis using AgOTf and HCl((aq)). A novel trinuclear species containing 5 was prepared by the addition of two equivalents of 15 to the labile precursor cis-[Pt(dmf)(2)(NH(3))(2)](2+) followed by acid deprotection of the pendant amine groups. Further complexation with two equivalents of trans-[PtClI(2)(NH(3))](-) followed by halogen ligand metathesis using AgOTf and HCl((aq)) afforded the triplatinum(II)-amine species [cis-[Pt(NH(3))(2)(L(1))(2)]-cis-[PtCl(2)(NH(3))](2)](OTf)(2)(23). Complexes 7-10, 19 and 23 represent the first examples of multinuclear platinum(ii)-amine derivatives containing carborane cages. Preliminary in vitro cytotoxicity studies for selected complexes are also reported.  相似文献   

18.
The new, potentially ambidentate heterocyclic ligand 2,3-bis(1-methylimidazol-2-yl)quinoxaline (bmiq) was obtained from 2,3-bis(1-methylimidazol-2-yl)glyoxal and 1,2-diaminobenzene. Its coordination to PtCl(2) and to the isoelectronic [AuCl(2)](+) in [AuCl(2)(bmiq)](AuCl(4)) occurs via the imine N donors of the imidazolyl groups, leading to the formation of seven-membered chelate rings with boat conformation. According to the spectroelectrochemistry (UV-vis-NIR, EPR), the reversible electron addition to the [PtCl(2)(bmiq)] and the free ligand takes place in the (non-coordinated) quinoxaline part of the molecule, similarly as for related complexes of dipyrido[3,2-a:2',3'-c]phenazines (dppz), 2,3-bis(2-pyridyl)quinoxalines (bpq) and 2,3-bis(dialkylphosphino)quinoxalines (QuinoxP). DFT calculations confirm the experimental results (structures, spectroscopy) and also point to the coordination potential of the quinoxaline N atoms. The electron addition to [AuCl(2)(bmiq)](+) takes place not at the ligand but at the metal site, according to experimental and DFT results.  相似文献   

19.
Jiang L  Meng XR  Xiang H  Ju P  Zhong DC  Lu TB 《Inorganic chemistry》2012,51(3):1874-1880
Three coordination polymers of [(NiL(1))(3)(TCBA)(2)] (1), [(NiL(2))(3)(TCBA)(2)] (2), and [(NiL(3))(3)(TCBA)(2)] (3) have been constructed using azamacrocyclic Ni(II) complexes [NiL(1)](ClO(4))(2)/[NiL(2)](ClO(4))(2)/[NiL(3)](ClO(4))(2) and TCBA(3-) as building blocks (L(1) = 3,10-bis(2-fluorobenzyl)-1,3,5,8,10,12-hexaazacyclotetradecane; L(2) = 3,10-bis(3-fluorobenzyl)-1,3,5,8,10,12-hexaazacyclotetradecane; L(3) = 3,10-bis(4-fluorobenzyl)-1,3,5,8,10,12- hexaazacyclotetradecane; TCBA(3-) = tri(4-carboxy-benzyl)amine). The results of X-ray diffraction analyses reveal that 1 shows a 2D Borromean structure, while 2 and 3 form 2D layer structures, and the 2D layers are further connected by the interlayer F···F interactions in 2 and C-H···F interactions in 3 to generate two 3D porous structures with 1D fluorine atoms interspersed channels. Gas sorption measurements illustrate that the desolvated 2 and 3can adsorb N(2), H(2), and CO(2) molecules. The different structures and gas sorption properties of 1 and 2/3 are mainly induced by the different positions of F atoms in azamacrocycle ligands.  相似文献   

20.
Yang C  Wang QL  Qi J  Ma Y  Yan SP  Yang GM  Cheng P  Liao DZ 《Inorganic chemistry》2011,50(9):4006-4015
Two novel complexes, [{Mn(salen)}(2){Mn(salen)(CH(3)OH)}{Cr(CN)(6)}](n)·2nCH(3)CN·nCH(3)OH (1) and [Mn(5-Clsalmen)(CH(3)OH)(H(2)O)](2n)[{Mn(5-Clsalmen)(μ-CN)}Cr(CN)(5)](n)·5.5nH(2)O (2) (salen(2-) = N,N'-ethylene-bis(salicylideneiminato) dianion; 5-Clsalmen(2-) = N,N'-(1-methylethylene)-bis(5-chlorosalicylideneiminato) dianion), were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 consists of one-dimensional (1D) alternating chains formed by the [{Cr(CN)(6)}{Mn(salen)}(4){Mn(salen)(CH(3)OH)}(2)](3+) heptanuclear cations and [Cr(CN)(6)](3-) anions. While in complex 2, the hexacyanochromate(III) anion acts as a bis-monodentate ligand through two trans-cyano groups to bridge two [Mn(5-Clsalmen)](+) cations to form a straight chain. The magnetic analysis indicates that complex 1 shows three-dimensional (3D) antiferromagnetic ordering with the Ne?el temperature of 5.0 K, and it is a metamagnet displaying antiferromagnetic to ferromagnetic transition at a critical field of about 2.6 kOe at 2 K. Complex 2 behaves as a molecular magnet with Tc = 3.0 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号