首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
锂离子电池正硅酸盐正极材料研究进展   总被引:3,自引:0,他引:3  
吕东平  王琳  杨勇 《电化学》2011,(2):161-168
正硅酸盐正极材料因其高理论容量、高安全性能、低成本及环境友好等优点,近几年引起研究者的广泛关注.本文综述了国际上正硅酸盐材料最新研究进展.结合本课题组在该领域的研究,着重从此类材料的合成方法、结构研究、电化学性能及反应机理等方面进行阐述.综合分析正硅酸盐材料各种合成方法的优缺点、结构研究存在的争议以及性能和机理研究上的...  相似文献   

2.
任慢慢  刘素文  卢启芳 《化学进展》2011,23(9):1985-1992
商业化锂离子电池以锂过渡金属氧化物作正极材料,由于安全性等问题限制了其更广泛的应用。在已经研究和开发的众多新型锂离子电池正极材料中,钒系磷酸盐由于具有较高的对锂电位和理论比容量而成为研究热点。本文综述了各种钒系磷酸盐类锂离子电池正极材料的研究现状,重点对各种材料的结构、制备方法和电化学性能进行了总结,并对改善材料综合性能的方法和机理进行了探讨。  相似文献   

3.
锂离子电池聚阴离子型正极材料   总被引:1,自引:0,他引:1  
王福庆  陈剑  张锋  衣宝廉 《化学进展》2012,24(8):1456-1465
聚阴离子型正极材料具有高安全性、低成本和环境友好等优点,是最具潜力的车用动力锂离子电池正极材料之一,但是较低的电子电导率和离子电导率以及较差的倍率性能和低温性能限制了这类材料的实际应用。近年来,通过对材料进行表面包覆电子良导体、体相掺杂以及制备纳米尺寸材料等,显著提升了部分聚阴离子型正极材料的电化学性能;同时,还实现了磷酸亚铁锂在车用动力电池中的实际应用。本文论述了近年来聚阴离子型正极材料研究领域中的研究热点及进展,特别是近几年重新成为研究热点的硅酸盐和硫酸盐正极材料,重点讨论了各种聚阴离子型正极材料的晶体结构、合成及改性方法、电化学性质、安全性以及实际应用所面临的技术瓶颈等,最后探讨了提升材料性能的可能途径。  相似文献   

4.
聚阴离子型锂离子电池正极材料研究进展   总被引:18,自引:0,他引:18  
施志聪  杨勇 《化学进展》2005,17(4):0-613
综述了各种聚阴离子型锂离子电池正极材料的研究现状,重点对各种材料的结构和性能的关系,尤其是聚阴离子在正极材料中的作用,以及改善材料电导率的各种方法及其机理进行了总结和探讨.  相似文献   

5.
王琳  吕东平  杨勇 《电化学》2011,17(3):318-322
采用水热辅助溶胶凝胶法及球磨包碳技术合成Li2CoxMn1-xSiO4(x=0、 0.1、0.3、0.5、1)与碳纳米管复合材料,X 射线衍射(XRD) 、扫描电镜(SEM)表征复合材料的结构与形貌。用循环伏安(CV) ,交流阻抗(EIS) ,充放电曲线测试材料的电化学性能,并与 Li2MnSiO4/C 和 Li2CoSiO4/C 进行对比。掺钴可以改善Li2MnSiO 4电极的倍率放电性能。  相似文献   

6.
近年来,钠离子电池因其原材料丰富、资源成本低廉及安全环保等突出优点,在电化学规模储能领域和低速电动车中具有广阔的应用前景。聚阴离子型磷酸盐具有稳定的框架结构、合适的工作电压和快速的离子扩散路径等特征,是一类极具研究价值和应用前景的钠离子电池正极材料。但是,磷酸盐正极材料电子导电性差和比能量偏低等缺陷限制了其走向实际应用。研究工作者通过体相结构调控和微纳结构设计等手段进行改性研究,旨在提升磷酸盐正极材料的性能表现、推动钠离子储能体系的研究开发。本文综述了钠离子电池磷酸盐正极材料的最新进展,包括正磷酸盐、焦磷酸盐、氟磷酸盐和混合磷酸盐化合物,通过对磷酸盐材料的晶体结构、储钠机理和改性策略等方面的综述,揭示材料成分、结构与电化学性能之间的本征关系,为聚阴离子磷酸盐正极材料的持续改性和新型磷酸盐高压正极材料的探索开发提供指导。  相似文献   

7.
谢志刚 《应用化学》2007,24(2):238-240
分别采用蔗糖和乙炔黑作为碳添加剂,高温固相法合成LiFePO_4复合物,利用X射线衍射、扫描电子显微镜和充放电等测试技术对其晶体结构、表观形貌和电化学性能进行了研究。结果表明,合成的LiFePO_4均为单一的橄榄石型晶体结构。采用蔗糖包覆的LiFePO_4具有更好的电化学性能,以0.2 C充放电,首次放电比容量为148.6 mA·h/g,20次循环后放电容量仍为140.3 mA·h/g。  相似文献   

8.
锂离子电池纳米正极材料   总被引:4,自引:0,他引:4  
综述了锂离子电池纳米正极材料的研究进展,阐述了这种材料用于锂离子电池的优势和存在的问题,把纳米正极材料分为过渡金属嵌锂化合物、金属氧化物和金属硫化物和其它纳米正极材料。归纳了不同纳米正极材料的主要制备方法,探讨了材料的制备方法与其结构、形貌和电化学性能之间的关系,展望了纳米正极材料用于锂离子电池的未来前景。  相似文献   

9.
锂离子电池正极材料LiMPO4的研究进展   总被引:20,自引:0,他引:20  
摘要综述了近年来有关LiMPO4(M=Fe、Mn、Co、V)系列材料的合成与性能研究的进展,重点讨论了LiFePO4材料改性的最新研究成果,分析了该类材料今后可能的发展趋势。  相似文献   

10.
锂离子电池正负极材料研究进展   总被引:9,自引:2,他引:9  
本文阐述了近年来锂离子电极材料的合成、结构以及性能等方面的发展状况。正极包插嵌锂的层状LixMO2和尖晶石型结构的LixM2O4的过渡金属氧化物(M=Co,Mn,V),负极材料包括石墨、焦碳、活性碳、低温热解碳以及金属氧化物等。  相似文献   

11.
With the rapid development of new energy industry, many universities have launched comprehensive experiments about preparation, characterization, battery assembly and performance testing of lithium-ion battery materials, and have achieved good teaching results. However, due to the limitations of equipment cost and experimental time, it is impossible to meet all experimental needs. We use virtual simulation technology to make students familiar with the basic operation skills of electrochemical experiments and the use of related instruments. Through the virtual experiment about the complete process of lithium-ion batteries including preparation of positive electrode materials, assembly of and performance testing during, we established a new teaching model of online and offline integration and improved the experiment efficiency and success rate in actual operation. At the same time, this model broaden students' vision and cultivate students' practical ability and innovative awareness.  相似文献   

12.
锂离子电池正极材料LiV3-xMnxO8的水热合成与性能   总被引:1,自引:0,他引:1  
采用水热法制备了Mn掺杂改性的锂二次电池钒基层状正极材料LiV3-xMnxO8(x=0.00, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10). 用X射线衍射(XRD)和扫描电镜(SEM)对材料的晶体结构和形貌进行表征, 并以50 mA·g-1的电流对材料进行恒流充放电测试. 研究了Mn掺杂对材料晶体结构和电化学性能的影响. 结果表明, Mn掺杂能够明显改善材料的电化学性能. 在掺杂改性的LiV3-xMnxO8材料中, LiV2.94Mn0.06O8的初始容量最高, 达到295 mAh·g-1. 当掺杂量控制在0.01≤x≤0.08范围内时, LiV3-xMnxO8材料均具有较好的循环性能和充放电可逆性, 经20次循环后放电比容量都保持在120 mAh·g-1以上, 40次循环后都保持在100 mAh·g-1以上, 且材料的充放电效率始终维持在93%以上.  相似文献   

13.
通过冻干干燥法辅助制备了分布均匀的纳米Li2FeSiO4材料.通过X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、N2吸附-脱附、循环伏安(CV)和充放电测试等手段对材料的结构及电化学性能进行了表征.结果表明,冻干法处理后得到的Li2FeSiO4材料颗粒尺寸更小,能够缩短锂离子的扩散距离;同时较大的比表面积可以使材料与电解液接触更加充分.在1.5~4.8 V电压范围内,与采用传统烘干干燥法制备的材料相比,采用冻干法制备的材料表现出更高的可逆比容量,并具有良好的倍率性能和循环稳定性.  相似文献   

14.
采用溶胶-凝胶法制备了氮掺杂的硅酸亚铁锂正极材料.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、充放电测试和交流阻抗测试(EIS)等对材料的结构及电化学性能进行了表征.结果表明,N元素已掺杂到Li2FeSiO4材料晶格中,样品具有较小的颗粒尺寸和优异的动力学性能,表现出较好的充放电比容量和倍率特性,首次放电比容量为130 mA·h/g,循环50次后比容量仍可达到124 mA·h/g,容量保持率高达95%.  相似文献   

15.
近年来,钠离子电池由于资源丰富、价格低廉等特点,逐渐成为储能领域的研究热点。然而,钠离子具有较大的离子半径和较慢的动力学速率,成为制约储钠材料发展的主要因素,而发展高性能的嵌钠正极材料是提高钠离子电池比能量和推进其应用的关键。本文详细综述了目前钠离子电池研究的正极材料体系,包括过渡金属氧化物、聚阴离子类材料、普鲁士蓝类化合物、有机分子和聚合物、非晶材料等,并结合这几年我们课题组在正极方面的研究工作,探讨了材料的结构和电化学性能的关系,分析了提高正极材料可逆容量、电压、结构稳定性的可能途径,为钠离子电池电极材料的发展提供参考。  相似文献   

16.
层状LiMnO_2正极材料的研究进展   总被引:1,自引:0,他引:1  
层状LiMnO2 化合物的研究是目前锂离子电池正极材料锂锰氧化物研究工作的新热点 ,本文综述了近年来国内外LiMnO2 化合物的研究进展 ,主要阐述了具有层状和扭曲层状结构的m LiMnO2和o LiMnO2 的结构、电性能、合成和改性方法等方面的研究状况 ,重点介绍了离子交换法合成层状LiMnO2 的原因和机理。探索新的合成方法和掺杂其它金属离子改性以提高循环性能是今后LiMnO2 的研究趋势。  相似文献   

17.
锂离子电池在高电压下会导致严重的电解液分解以及不稳定的正极与电解质界面问题,严重制约高电压正极材料的商业化.粘结剂不仅可以将正极活性材料和导电炭紧密粘结在集流体上,还对构建电解质与正极之间的多尺度相容性界面起积极作用,因此,粘结剂的优化可以有效解决上述难题.本文提出了高电压锂离子电池正极粘结剂需具备的必要条件,如:粘结性能和机械性能优异,具有出色的电化学稳定性和热力学稳定性以及良好的离子和电子传输能力等.综述了近些年来高电压正极粘结剂的研究及发展现状,通过天然粘结剂和合成粘结剂对目前已报道的高电压粘结剂进行了评述,介绍了各种粘结剂对电极的粘结性能和包覆以及对锂离子电池性能的影响机制,重点阐述了粘结剂分子结构中的极性基团与活性物质间的相互作用,如氢键和离子-偶极相互作用,并讨论了设计开发高电压正极粘结剂的途径以及展望了高电压正极粘结剂的发展前景.  相似文献   

18.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号