首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physical concept of locality is first analyzed in the special relativistic quantum regime, and compared with that of microcausality and the local commutativity of quantum fields. Its extrapolation to quantum general relativity on quantum bundles over curved spacetime is then described. It is shown that the resulting formulation of quantum-geometric locality based on the concept of local quantum frame incorporating a fundamental length embodies the key geometric and topological aspects of this concept. Taken in conjunction with the strong equivalence principle and the path-integral formulation of quantum propagation, quantum-geometric locality leads in a natural manner to the formulation of quantum-geometric propagation in curved spacetime. Its extrapolation to geometric quantum gravity formulated over quantum spacetime is described and analyzed.  相似文献   

2.
The stochastic phase-space solution of the particle localizability problem in relativistic quantum mechanics is reviewed. It leads to relativistically covariant probability measures that give rise to covariant and conserved probability currents. The resulting particle propagators are used in the formulation of stochastic geometries underlying a concept of quantum spacetime that is operationally based on stochastically extended quantum test particles. The epistemological implications of the intrinsic stochasticity of such quantum spacetime frameworks for microcausality, the EPR paradox, etc., are discussed.Supported in part by NSERC Grant A5208.  相似文献   

3.
The orthodox presentation of quantum theory often includes statements on state preparation and measurements without mentioning how these processes can be achieved. The often quoted projection postulate is regarded by many as problematical. This paper presents a systematic framework for state preparation and measurement. Within the existing Hilbert space formulation of quantum mechanics for spinless particles we show that it is possible (1)to prepare an arbitrary state and (2)to reduce all quantum measurements to local position measurements in an asymptotic way by unitary evolution processes without recourse to the projection postulate. A generalization to spin-1/2particles is also given. The theory presented provides a general mathematical and theoretical foundation for many practical schemes for state preparation and measurement.  相似文献   

4.
A theory of the joint measurement of quantum mechanical observables is generalized in order to make it applicable to the measurement of the local observables of field theory. Subsequently, the property of local commutativity, which is usually introduced as a postulate, is derived by means of the theory of measurement from a requirement of mutual nondisturbance, which, for local observables performed at a spacelike distance from each other, is interpreted as a requirement of macrocausality. Alternative attempts at establishing a deductive relationship between relativistic causality and local commutativity are reviewed, but found wanting, either because of the assumption of an unwarranted objectivity of the object system (algebraic approach) or because of the use of a projection postulate (operational approach). Finally, the quantum mechanical nonobjectivity is related to certain features of nonlocality which are present in the formalism of quantum mechanics.  相似文献   

5.
It has been discussed earlier that (weak quasi-) quantum groups allow for a conventional interpretation as internal symmetries in local quantum theory. From general arguments and explicit examples their consistency with (braid-) statistics and locality was established. This work addresses the reconstruction of quantum symmetries and algebras of field operators. For every algebraA of observables satisfying certain standard assumptions, an appropriate quantum symmetry is found. Field operators are obtained which act on a positive definite Hilbert space of states and transform covariantly under the quantum symmetry. As a substitute for Bose/Fermi (anti-) commutation relations, these fields are demonstrated to obey a local braid relation.  相似文献   

6.
The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a “reinterpretation postulate” to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.  相似文献   

7.
We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.  相似文献   

8.
Spacetime measurements and gravitational experiments are made by using objects, matter fields or particles and their mutual relationships. As a consequence, any operationally meaningful assertion about spacetime is in fact an assertion about the degrees of freedom of the matter (i.e. non gravitational) fields; those, say for definiteness, of the Standard Model of particle physics. As for any quantum theory, the dynamics of the matter fields can be described in terms of a unitary evolution of a state vector in a Hilbert space. By writing the Hilbert space as a generic tensor product of “subsystems” we analyse the evolution of a state vector on an information theoretical basis and attempt to recover the usual spacetime relations from the information exchanges between these subsystems. We consider generic interacting second quantized models with a finite number of fermionic degrees of freedom and characterize on physical grounds the tensor product structure associated with the class of “localized systems” and therefore with “position”. We find that in the case of free theories no spacetime relation is operationally definable. On the contrary, by applying the same procedure to the simple interacting model of a one-dimensional Heisenberg spin chain we recover the tensor product structure usually associated with “position”. Finally, we discuss the possible role of gravity in this framework.  相似文献   

9.
It is proved that theS-matrix satisfies the Bogolubov microcausality condition in each order in perturbation theory in a quantum field theory with nonlocal interaction, where the nonlocality is introduced with the help of form factors being entire analytical functions of the order 1/2.  相似文献   

10.
Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action IeffP in quantum canonical NIs instead of the classical IP in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively.Received: 12 February 2002, Revised: 16 June 2003, Published online: 25 August 2003Z.-P. Li: Corresponding authorAddress for correspondence: Department of Applied Physics, Beijing Polytechnic University, Beijing 100022, P.R. China  相似文献   

11.
We study three problems of the light-front field theory quantized in a finite volume with fields (anti-)periodic in x: (a) microcausality by deriving an integral representation for the discrete Pauli-Jordan function; (b) surface terms violating Poincaré algebra; (c) a LF version of the Goldstone theorem. The first two problems are resolved by careful mathematical treatment. The third one illustrates the usefulness of DLCQ as an analytical scheme.  相似文献   

12.
A recently formulated concept of stochastic localizability is shown to be consistent with a concept of stochastic microcausality, which avoids the conclusions of Hegerfeldt's no-go theorem as to the inconsistency of sharp localizability of quantum particles and Einstein causality. The proposed localizability on quantum space-time is shown to lead to strict asymptotic causality. For finite time evolutions, upper bounds on propagation to the exterior of stochastic light cones are derived which show that the resulting probabilities are too small to be actually observable in a realistic context.Supported by an NSERC Fellowship.Suported in part by NSERC research grant No. A5206.  相似文献   

13.
It is shown that the dynamical consistency requirements of quantum field theory and the Lorentz-invariant character of particle kinematics and wave equations are compatible with the postulate that physical space is a complex manifold with Euclidean-Gaussian measure in the small. Such a postulate for the microstructure of space introduces a fundamental length(10–16 cm) and leads to-functions that are analytic on the light-cone for a free field, and hence to self-energies and renormaiization constants that are finite for interacting fields.Work supported by a National Science Foundation grant.  相似文献   

14.
15.
With the help of a postulate of gauge group parameter involved with ghost fields, the infinitesimal gauge transformation laws preserving the gauge-invariance of the quantum Lagrangian itself of the quantized Glashow- Weinberg-Salam model are established precisely. The corresponding Ward-Takahashi identity for the model is derived exactly.  相似文献   

16.
The quantum theory of the vector field minimally coupled to the gravity of the de Sitter spacetime is built in a canonical manner starting with a new complete set of quantum modes of given momentum and helicity derived in the moving chart of conformal time. It is shown that the canonical quantization leads to new vector propagators which satisfy similar equations as the propagators derived by Tsamis and Woodard (J Math Phys 48:052306, 2007) but having a different structure. The one-particle operators are also written down pointing out that their properties are similar with those found already in the quantum theory of the scalar, Dirac and Maxwell free fields.  相似文献   

17.
In order to have well defined rules for the perturbative calculation of quantities of interest in an interacting quantum field theory in curved spacetime, it is necessary to construct Wick polynomials and their time ordered products for the noninteracting theory. A construction of these quantities has recently been given by Brunetti, Fredenhagen, and K?hler, and by Brunetti and Fredenhagen, but they did not impose any “locality” or “covariance” condition in their constructions. As a consequence, their construction of time ordered products contained ambiguities involving arbitrary functions of spacetime point rather than arbitrary parameters. In this paper, we construct an “extended Wick polynomial algebra”– large enough to contain the Wick polynomials and their time ordered products – by generalizing a construction of Dütsch and Fredenhagen to curved spacetime. We then define the notion of a local, covariant quantum field, and seek a definition of local Wick polynomials and their time ordered products as local, covariant quantum fields. We introduce a new notion of the scaling behavior of a local, covariant quantum field, and impose scaling requirements on our local Wick polynomials and their time ordered products as well as certain additional requirements – such as commutation relations with the free field and appropriate continuity properties under variations of the spacetime metric. For a given polynomial order in powers of the field, we prove that these conditions uniquely determine the local Wick polynomials and their time ordered products up to a finite number of parameters. (These parameters correspond to the usual renormalization ambiguities occurring in Minkowski spacetime together with additional parameters corresponding to the coupling of the field to curvature.) We also prove existence of local Wick polynomials. However, the issue of existence of local time ordered products is deferred to a future investigation. Received: 27 March 2001 / Accepted: 6 June 2001  相似文献   

18.
Let us consider a theory ofn scalar, real, local, Poincaré covariant quantum fields forming an irreducible set and giving rise to one particle states belonging to the same mass different from zero. The vacuum is unique. It is shown under fairly weak assumptions that every Poincaré and TCP invariant symmetry of the theory, implemented unitarily, which mapps localized elements of the field algebra into operators almost local with respect to the former (such a symmetry we call a physical one) can be defined uniquely in terms of the incoming or outgoing fields and ann-dimensional (real) orthogonal matrix. The symmetry commutes with the scattering matrix. Incidentally we show also that the symmetry groups are compact. A special case of these symmetries are the internal symmetries and symmetries induced by locally conserved currents local with respect to the basic fields and transforming under the same representation of the Poincaré group. We may make linear combinations out the original fields resulting in complex fields and its complex conjugate in a suitable way. The inspection of the representations of the groupsSO(n) and their subgroups sheds some light on the s.c. generalized Carruthers Theorem concerning the self- and pair-conjugate multiplets.  相似文献   

19.
Issues related with microcausality violation and continuum limit in the context of (1+1) dimensional scalar field theory in discretized light-cone quantization (DLCQ) are addressed in parallel with discretized equal time quantization (DETQ) and the fact that Lorentz invariance and microcausality are restored if one can take the continuum limit properly is emphasized. In the free case, it is shown with numerical evidence that the continuum results can be reproduced from DLCQ results for the Pauli–Jordan function and the real part of Feynman propagator. The contributions coming from k+ near zero region in these cases are found to be very small. In the interacting case, aspects related to the continuum limit of DLCQ results in perturbation theory in momentum space are discussed.  相似文献   

20.
The quantum regime of a plasma‐whistler‐wave‐pumped free‐electron laser (FEL) in the presence of an axial‐guide magnetic field is presented. By quantizing both the plasma whistler field and axial magnetic field, an N‐particle three‐dimensional Hamiltonian of quantum‐FEL (QFEL) has been derived. Employing Heisenberg evolution equations and introducing a new collective operator which controls the vertical motion of electrons, a quantum dispersion relation of the plasma whistler wiggler has been obtained analytically. Numerical results indicate that, by increasing the intrinsic quantum momentum spread and/or increasing the axial magnetic field strength, the bunching and the radiation fields grow exponentially. In addition, a spiking behavior of the spectrum was observed with increasing cyclotron frequency which provides an enormous improvement in the coherence of QFEL radiation even in a limit close‐to‐classical regime, where an overlapping of these spikes is observed. Also, an upper limit of the intrinsic quantum momentum spread which depends on the value of the cyclotron frequency was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号