首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of poly[2,2′-(1,4-phenylene)-6,6′-bis(3-phenylquinoxalines)] were prepared. These polymers had all the same repeating unit but differed in molecular weight and polymer chain endings. The thermal degradation characteristics in air and vacuum were determined by isothermal weight loss measurements. The temperature coefficients of thermal degradation (apparent activation energies) were also determined. Whereas the apparent activation energies for degradation in air showed a considerable dependency on the type of polymer chain endings, no such effect was observed upon pyrolysis in vacuo. A possible chain-end unzipping mechanism of degradation in air is postulated to explain these results.  相似文献   

2.
Crosslinking of linear poly[2,2′-(1,4-phenylene)-6,6′-bis(3-phenylquinoxaline)] (PPQ) by isothermal heat exposure in the temperature range between 425 and 490°C was investigated by means of torsional braid analysis. The change in glass transition temperature due to isothermal exposure was used as a kinetic parameter. In order to determine the effect of molecular weight and type of polymer chain ends, three PPQ samples were prepared that differed only in molecular weight and polymer chain endgroups. The apparent activation energy of isothermal crosslinking was independent of molecular weight and chain endings. Its value of 60 kcal/mole is the same as that for the thermal degradation of PPQ (determined by isothermal weight loss measurements). The rates of change of Tg at a particular temperature, however, are a function of both molecular weight (at least for these polymers that do not have a sufficiently high molecular weight) and the type of polymer chain ends. It was observed that isothermally crosslinked PPQ gave a higher break point in the TGA curve and also an increased char yield at 800°C than the linear precursor.  相似文献   

3.
Novel polypyrazolinones with inherent viscosities ranging from 0.12 to 0.44 dL/g were prepared by the Michael-type nucleophilic addition-cyclization of various dihydrazines with 3,3′-(1,3- or 1,4-phenylene)bis(ethyl propynoate) (1,3- or 1,4-PEP) and 3,3′-(1,4-phenylene)bis(phenyl propynoate) (1,4-PPhP) in N-methylpyrrolidone (NMP) solution at 25–110°C. The polymers exhibited moderate thermal stability with initial weight loss in air about 200°C and in nitrogen about 300°C (TGA). No apparent Tg′s were observed by DSC analysis. The synthesis and characterization of the polypyrazolinones is discussed.  相似文献   

4.
The naturally occurring polybrominated indoles 2,2′,5,5′-tetrabromo-3,3′-bi-1H-indole, 2,2′,6,6′-tetrabromo-3,3′-bi-1H-indole, and 2,2′,5,5′,6,6′-hexabromo-3,3′-bi-1H-indole were synthesized using a palladium catalyzed, carbon monoxide mediated, double reductive N-heterocyclization of 2,3-bis(2-nitro-4(or 5)-bromophenyl)-1,4-butadienes as the key step.  相似文献   

5.
Poly[oxy-2,2′-diphenyleneoxyisophthaloyl-b-oxy(2-methyl-1,3-phenylene)oxyterephthaloyl] I, poly[oxy-2,2′-diphenyleneoxyterephthaloyl-b-oxy(2-methyl-1,3-phenylene)oxyterephthaloyl] II, poly(oxy-2,2′-diphenyleneoxyisophthaloyl-b-oxy-2,2′-diphenyleneoxyterephthaloyl) III, poly[oxy-2,2′-diphenyleneoxyterephthaloyl-b-oxy(2-methyl-1,4-phenylene)oxyterephthaloyl] IV, poly[oxy2,2′-diphenyleneoxyterephthaloyl-b-oxy(2-chloro-1,4-phenylene)oxyterephthaloyl] V, poly[oxy-2,2′-diphenyleneoxyterephthaloyl-co-oxy(2-chloro-1,4-phenylene)oxyterephthaloyl] VI, and poly[oxy-2,2′-diphenyleneoxyterephthaloyl-co-oxy(2-methyl-1,4-phenylene)oxyterephthaloyl] VII have been synthesized and characterized. Random copolyester VI appears to form a birefringent fluid phase above the melting temperature.  相似文献   

6.
Mesoionic poly(1,1′-(1,3-phenylene)-3,3′-(1,4-phenylene)-bis(5-decyl-2-decylthio-4,6-dioxo-1,3-diazine)) ( 6 ) was prepared by cyclisation of the isothiourea component of poly(1,1′-(1,3-phenylene)-3,3′-(1,4-phenylene)-bis(2-decylisothiourea)) ( 4 ) with decylmalonic acid (5) by use of dicyclohexylcarbodiimide (DCC). Polymer 4 was obtained by polymer analogous alkylation of poly(1,1′-(1,3-phenylene)-3,3′-(1,4-phenylene)-bisthiourea) ( 3 ). For comparison of spectroscopic data, 5-butyl-2-propylthio-4,6-dioxo-1,3-diphenyl-1,3-diazine ( 9 ) was synthesized as low molecular weight model compound.  相似文献   

7.
A novel and convenient synthetic method for the preparation of α,ω-bis(2,6-dimethylphenol)–poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-2OH) is presented. It is based on the oxidative copolymerization of 2,6-dimethylphenol (DMP) with 2,2′-di(4-hydroxy-3,5-dimethylphenyl propane) (TMBPA) in a mixture of water–methanol or chlorobenzene–methanol. By using a 4/1 mole ratio of DMP to TMBPA and different solvent mixtures, it was possible to obtain bifunctional PPO-2OHs with number average molecular weights between 1000 and 5000. A phase-transfer-catalyzed etherification of PPO-2OH chain ends with a mixture of m- and p-chloromethylstyrene was used to synthesize α,ω-bis(vinylbenzyl)-poly(2,6-dimethyl-1,4-phenylene oxide)s (PPO-2VBs). The thermal polymerization of the PPO-2VBs was studied by differential scanning calorimetry, and has demonstrated a very high thermal reactivity for this new class of reactive oligomers.  相似文献   

8.
The synthesis of polyamides from short-chain aliphatic diacids, such as oxalic and fumaric acids, is difficult because of the thermal instability and volatility of the intermediates and side reactions with the polymerization media. A variety of synthetic routes to these polymers has been explored. Several aromatic polyoxamides with high molecular weight were obtained in high yield by an acid chloride vapor-solvent-water interfacial process. Polyoxamides of intermediate molecular weight also were obtained by preparation of oligomers from diamines and oxalic diesters and condensing these oligomers further in a thermal polymerization step. Aromatic polyfumaramides and terephthalamidefumaramides were prepared by modified solution procedures in amide solvents. Another route to polyfumaramides was the synthesis of N,N′-bis(4-aminophenyl) fumaramide and its use as a diamine with diacid chloride. The 1,4-phenylene and benzidine polyfumaramides and oxamides have extended-chain structures in solution in sulfuric, chlorosulfonic, and fluorosulfonic acids. Some of the polymers were soluble enough to yield liquid crystalline solutions. High-tenacity high-modulus fibers from poly(1,4-phenylene fumaramide/terephthalamide)s are described.  相似文献   

9.
A spirobichroman structure-containing diether anhydride (SBCDA), 6,6′-bis(3,4-dicarboxyphenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman dianhydride, was prepared by the nucleophilic nitrodisplacement of 4-nitrophthalonitrile with the phenolate ion of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman, followed by alkaline hydrolysis of the intermediate tetranitrile and dehydration of the resulting tetraacid. A series of high molecular weight poly(ether imide)s with inherent viscosities between 0.45 and 1.28 dL/g were synthesized from SBCDA and various aromatic diamines via a conventional two-stage procedure that included ring-opening polyaddition in N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by thermal cyclization to poly(ether imide)s. The intermediate poly(amic acid)s had inherent viscosities of 0.70–1.50 dL/g. Except for the poly(ether imide) obtained from p-phenylenediamine, the other poly(ether imide)s were soluble in various organic solvents and could be solution-cast into transparent, flexible, and tough films. These poly(ether imide)s had glass transition temperatures in the range 175–262°C and showed no significant decomposition below 420°C, with 10% weight loss being recorded above 446°C in nitrogen or air. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2801–2809, 1997  相似文献   

10.
[Cu(I) {6,6′-bis(bromomethyl)-2,2′-bipyridine}2](PF6) complexes were used as metallo-supramolecular initiators for the polymerization of 2-oxazolines resulting in defined polymers with a central 6,6′-disubstituted 2,2′-bipyridine unit. The living character of the polymerization was demonstrated with the linear relationship between the weight-average molecular weight w and the [monomer]/[initiator] ratio as well as in the synthesis of block copolymers. The metal ions could be removed resulting in uncomplexed polymers with a free central metal binding unit.  相似文献   

11.
A novel hexamethylspirobichroman (HMSBC) unit-containing dicarboxylic acid, 6,6′-bis(4-carboxyphenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was derived from nucleophilic substitution of p-fluorobenzonitrile with the phenolate ion of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 1 ), followed by alkaline hydrolysis of the intermediate bis(ether nitrile). Using TPP and pyridine as condensing agents, a series of polyamides with inherent viscosities in the range of 0.82–1.14 dL/g were prepared by the direct polycondensation of dicarboxylic acid 3 with various aromatic diamines. All the obtained polymers were noncrystalline and soluble in various organic solvents such as N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP). Except for the polymer derived from benzidine, the other polyamides could be solution cast into transparent and tough films, and their tensile strengths, elongations at break, and tensile moduli were in the range of 56–76 MPa, 4–59%, and 1.6–2.0 GPa, respectively. These polyamides had glass transition temperatures in the range of 183–200°C with 10% weight loss above 420°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1479–1486, 1997  相似文献   

12.
The effects of incorporating a p-phenylene- (or m-phenylene)-1,3,4-oxadiazole fragment into the backbone of poly[1,4-phenylene(diphenylsilyl)-1,4-phenylene-2,5-(1,3,4-oxadiazole)], which was developed by the authors, was investigated. Bis[(p-carbohydrazidophenyl)]diphenylsilane was copolymerized with dipentachlorophenyl terephthalate or isophthalate to produce the prepolymers poly[N-(p-diphenylsilylbenzoyl)-NN″-(terephthaloyl)-N″′-(p-benzoyl)dihydrazide] and poly[N-(p-diphenylsilylbenzoyl)-N′,-N″-(isophthaloyl)-N″′-p-(benzoyl) dihydrazide], respectively. The polyhydrazides were converted by thermal dehydration into poly[1,4-phenylene(diphenylsilyl)-1,4-phenylene-(1,3,4-oxadiazole-2,5-diyl)-1,4-phenylene-2,5-(1,3,4-oxadiazole)] and poly[1,4-phenyl-ene(diphenylsilyl)-1,4-phenylene-(1,3,4-oxadiazole-2,5-diyl)-1,3,4-(oxadiazole)]. The new polymers were soluble in organic solvents. Films cast from these solutions exhibited good adhesion to glass and metal surfaces. Thermal analysis showed that the heat stability of all these polymers was about the same and that they were resistant to decomposition when heated in air to about 400°C. The results also indicated that these polymers were somewhat less heat-resistant than samples of poly-[1,4-phenylene(diphenylsilyl)-1,4-phenylene-2,5-]1,3,4-(oxadiazole) synthesized from bis(p-carbohydrazidophenyl)diphenylsilane and bis-(p-carbopentachlorophenoxy-phenyl)diphenylsilane.  相似文献   

13.
Linear polyphenylimide-quinoxalines (PPIQ) can be crosslinked by isothermal heat treatment in an inert atmosphere. To show this, three polyphenylimide-quinoxalines were prepared which differed only in molecular weight and polymer chain endings. Apparent activation energies of thermal crosslinking were then obtained from the rates of change of Tg as a function of time and temperature. The values (60 kcal/mole) were essentially the same as those for the thermal degradation of the same polymer in vacuum. Differences in polymer molecular weight had a distinct effect on the rates of change of Tg but the polymer chain ends seemed to have a lesser effect than previously observed on polyphenylquinoxalines (PPQ). Nevertheless, the rate of change in Tg is greater for PPIQ than for PPQ of a similar molecular weight. This indicates that the imide portion of the polymer chain leads to faster crosslinking under isothermal conditions.  相似文献   

14.
4-Fluorobenzophenone reacted with potassium carbonate in the presence of silica catalyst in diphenyl sulfone solvent to yield 4,4′-dibenzoyldiphenyl ether. This new etherification reaction was extended to three difluoro aromatic ketones. 4,4′-Bis(4-fluorobenzoyl)diphenyl ether ( I ) reacted with potassium carbonate to yield a crystalline poly(oxy-1,4-phenylene-carbonyl-1,4-phenylene) (PEK) and 4,4′-bis{4-[4-(4-fluorobenzoyl)phenoxy]benzoyl}benzene ( II ) gave a crystalline poly(oxy-1,4-phenylene-carbonyl-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene-carbonyl-1,4-phenylene)(PEKEKEKK). 2,8-Bis(4-fluorobenzoyl)dibenzofuran ( III ) or 2,8-bis(4-chlorobenzoyl)dibenzofuran ( IV ) reacted with potassium carbonate to yield a poly(oxy-1,4-phenylene-carbonyl-2,8-dibenzofuran-carbonyl-1,4-phenylene) (PEKBK). The PEKBK was a noval amorphous polymer with the glass transition temperature of 222°C and it showed excellent thermal stability [T. Tanabe and I. Fukawa, Jpn. Pat., Kokai 64–74223 (1989)]. Several amorphous dibenzofuran type polyetherketone copolymers were prepared by coplycondensation of III with 4,4′-difluorobenzophenone ( V ) or 1,4-bis(4-fluorobenzoyl)benzene ( VI ) [T. Tanabe and I. Fukawa, Jpn. Pat., Kokai 1153722 (1989)]. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
Abstract

A series of poly(ether sulfone)s and poly(ether ketone)s were synthesized from combinations of 1,5- and 2,6-bis(4-fluorosulfonyl)naphthalene, 2,6-bis(4-fluorobenzoyl)naphthalene, and 2,6-bis(4-fluorobenzoyl)quinoline with 3,3′,5,5′-tetramethylbiphenyl-4,4′-diol and 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol. The polycondensations proceeded quantitatively in diphenylsulfone in the presence of anhydrous potassium carbonate to afford polymers with inherent viscosities between 0.40 and 1.28 dL/g measured in N-methyl-2-pyrrolidone or concentrated sulfuric acid. The tetramethyl- and hexamethyl-substituted aromatic polyethers exhibited good thermal stability, did not decompose below 330°C in both air and nitrogen atmospheres, and had higher glass transition temperatures than the corresponding unsubstituted polymers. The methylsubstituted poly(ether sulfone)s and poly(ether ketone)s showed good solubility in such common organic solvents as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, chloroform, and 1,4-dioxane.  相似文献   

16.
A novel spirobichroman unit containing dietheramine, 6,6′-bis(4-aminophenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was prepared by the nucleophilic substitution of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman with p-chloronitrobenzene in the presence of K2CO3 followed by hydrazine catalytic reduction of the intermediate dinitro compound. A series of polyimides were synthesized from diamine 3 and various aromatic dianhydrides by a conventional two-stage procedure through the formation of poly(amic-acid)s followed by thermal imidization. The intermediate poly(amic-acid)s had inherent viscosities of 1.00–2.78 dL/g. All the poly-(amic-acid)s could be thermally cyclodehydrated into flexible and tough polyimide films, and some polyimides were soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). These polyimides had glass transition temperatures (Tg) in the range of 236–256°C, and 10% weight loss occurred up to 450°C. Furthermore, a series of polyamides and poly(amide-imide)s with inherent viscosities of 0.71–2.29 dL/g were prepared by direct polycondensation of the diamine 3 with various aromatic dicarboxylic acids and imide ring-containing dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides and poly(amide-imide)s were readily soluble in polar solvents such as DMAc, and tough and flexible films could be cast from their DMAc solutions. These polymers had glass transition temperatures in the range of 137–228°C and 10% weight loss temperatures in the range of 419–443°C in air and 404–436°C in nitrogen, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1487–1497, 1997  相似文献   

17.
The five benzene rings-containing (hereafter referred to as “five-ring”) dicarboxylic acids α,α′-bis[4-(4-carboxyphenoxy)phenyl]-1,4-diisopropylbenzene (p- III ) and α,α′-bis[4-(4-carboxyphenoxy)phenyl]-1,3-diisopropylbenzene (m- III ) were prepared by the fluoro-displacement of α,α′-bis(4-hydroxyphenyl)-1,4-diisopropylbenzene and α,α′-bis(4-hydroxyphenyl)-1,3-diisopropylbenzene with p-fluorobenzonitrile, and subsequent alkaline hydrolysis of the intermediate dinitriles. A number of high-molecular-weight polyamides based on these two “five-ring” dicarboxylic acids (p- III and m- III ) and various aromatic diamines were directly synthesized in N-methyl-2-pyrrolidone (NMP) containing lithium chloride (LiCl) or calcium chloride (CaCl2) using triphenyl phosphite and pyridine as condensing agents. These polyamides were obtained with inherent viscosities above 0.51 and up to 0.91 dL/g. The weight-average molecular weight were in the range of 51,000–211,000. Most of these polyamides were amorphous and readily soluble in polar solvents such as NMP, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), and afforded tough, flexible, and transparent films by solution-casting. The films had tensile strength of 50–83 MPa, elongation to break of 4–8%, and tensile modulus of 1.3–2.0 GPa. Most polyamides showed distinct glass transitions on the differential scanning calorimetry (DSC) curves ranging from 147 to 177°C. In nitrogen or air, all the polymers showed no significant weight loss up to 490°C, as indicated by thermogravimetric analysis (TG). © 1996 John Wiley & Sons, Inc.  相似文献   

18.
The thermal degradation reactions of seven aromatic amides which are structurally related to the commercial aramids Kevlar (poly(1,4-phenylene terephthalamide)) and Nomex (poly(1,3-phenylene isophthalamide) have been investigated in the temperature range 450 to 700°C by pyrolysis/gas chromatography/mass spectrometry. Benzanilide, N,N′-dibenzoyl-1,4-phenylenediamine, N,N′-dibenzoyl-1,3-phenylenediamine, N,N′-diphenylterephthalamide, N,N′-diphenylisophthalamide, N-(4-aminophenyl)-benzamide and N-(3-aminophenyl)benzamide all gave very low yields of carbon oxides and water. The structures of the higher molecular weight products were related to those of the parent compounds and their yields are presented quantitatively. The principal mechanism for thermal cleavage of the amide bonds in the N,N′-dibenzoylphenylenediamines is mainly heterolytic, while for the other compounds thermal cleavage of the amide bonds is homolytic. The relationship between the pyrolysis products of the model compounds and those of the corresponding aramids is discussed.  相似文献   

19.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   

20.
An aromatic semirigid polyquinoline, poly[2,2′-(p,p′-oxydi-p-phenylene) 6,6′-oxybis(4-phenylquinoline)], has been studied in dilute solution using viscometry, light scattering, and size-exclusion chromatography coupled with low-angle light-scattering detection (SEC/LALS). The SEC/LALS technique permits determination of the intrinsic viscosity and absolute molecular weight for a series of narrow fractions without preparative fractionation. Aggregation that was observed in dilute chloroform solutions was found to be related to protonation of the polyquinoline by HCI present in chloroform. Unperturbed dimensions calculated from the SEC/LALS results show the chain to have nearly freely rotating dimensions, as expected for a chain composed of long (12-Å) rigid segments connected by ether linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号