首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple CdSe and ZnSe semiconductor shells were grown on PbSe semiconductor spherical cores with monolayer control. For CdSe shell coating, we found that there was little room to further increase the quantum yields of freshly-made high-quality PbSe nanocrystals that already owned very high initial values because of their good surface status; but there was great improvement for the PbSe nanocrystals with low initial quantum yields because of the poor surface status. Nonetheless, the quantum yield for the latter case could not reach the former's value. Additional ZnSe shells on PbSe/CdSe could further increase the quantum yield and protect the nanocrystals from air oxidation. The observed phenomena in the synthesis of the PbSe/CdSe and PbSe/CdSe/ZnSe core/shell structures were explained through the carrier wave function expansion and the surface polarization.  相似文献   

2.
The effect of the outer surface of core/shell nanocrystals on the fluorescence quantum yield was observed for InAs/InP and InAs/CdSe core/shells (see picture). For InAs/CdSe we observed substantial enhancement of the fluorescence quantum yield compared to the InAs core, and up to two times larger than the laser dye IR-140. Such core/shell nanocrystals have potential use as biological fluorescent markers in the near IR spectral range.  相似文献   

3.
在有机相体系中利用ZnSe前驱体纳米晶制备过程中的富Se环境,以引入Cd2+的方式在相对温和的环境下通过控制Cd2+离子的加入量及调节反应时间,成功制备了ZnSe/CdSe核-壳复合结构纳米晶.利用X射线衍射(XRD)、透射电镜(TEM)、紫外-可见吸收光谱(UV-vis)和荧光光谱(FL)对其结构形貌以及光学性质进行表征和分析的结果表明,CdSe以外延生长的方式包覆在ZnSe纳米晶表面从而形成具有良好结晶性的核-壳复合结构,其荧光发射始终保持良好单色性,同时实现了在500~620nm可见光范围内的连续可调.  相似文献   

4.
Quantum dots with a core/shell/shell structure consisting of an alloyed core of InAs(x)P(1-x), an intermediate shell of InP, and an outer shell of ZnSe were developed. The InAs(x)P(1-x) alloyed core has a graded internal composition with increasing arsenic content from the center to the edge of the dots. This compositional gradient results from two apparent effects: (1) the faster reaction kinetics of the phosphorus precursor compared to the arsenic precursor, and (2) a post-growth arsenic-phosphorus exchange reaction that increases the arsenic content. The cores have a zinc blend structure for all compositions and show tunable emission in the near-infrared (NIR) region. A first shell of InP leads to a red-shift and an increase in quantum yield. The final shell of ZnSe serves to stabilize the dots for applications in aqueous environments, including NIR biomedical fluorescence imaging. These NIR-emitting core/shell/shell InAs(x)P(1-x)/InP/ZnSe were successfully used in a sentinel lymph node mapping experiment.  相似文献   

5.
We report a two-step synthesis of highly luminescent CdS/ZnSe core/shell nanocrystals (emission quantum yields up to 50%) that can produce efficient spatial separation of electrons and holes between the core and the shell (type-II localization regime). Our synthesis involves fabrication of cubic-singony CdS core particles that are subsequently overcoated with a layer of ZnSe in the presence of surfactant-ligands in a noncoordinating solvent. Studies of different growth regime of the ZnSe shell indicate that one approach to obtaining high emission efficiencies is through alloying the CdS/ZnSe interface with CdSe, which leads to the formation of an intermediate ZnCdSe layer with a graded composition. We perform theoretical modeling of these core/shell nanocrystals using effective mass approximation and applying first-order perturbation theory for treating both direct electron-hole coupling and the core/shell interface-polarization effects. Using this model we determine the range of geometrical parameters of the core/shell structures that result in a type-II localization regime. We further applied this model to evaluate the degree of electron-hole spatial separation (quantified in terms of the electron-hole overlap integral) based on measured emission wavelengths. We also discuss the potential applicability of these nanocrystals in lasing technologies and specifically the possibility of single-exciton optical gain in type-II nanostructures.  相似文献   

6.
Here we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. The inner CdTe/CdS and CdTe/CdSe heterostructures have type-I, quasi-type-II, or type-II band offsets depending on the core size and shell thickness, and the outer CdS/ZnS and CdSe/ZnS structures have type-I band offsets. The emission maxima of the assembled heterostructures were found to be dependent on the CdTe core size, with a wider range of spectral tunability observed for the smaller cores. Because of encapsulation effects, the formation of successive shells resulted in a considerable increase in the photoluminescence quantum yield; however, identifying optimal shell thicknesses was required to achieve the maximum quantum yield. Photoluminescence lifetime measurements revealed that the decrease in the quantum yield of thick-shell nanocrystals was caused by a substantial decrease in the radiative rate constant. By tuning the diameter of the core and the thickness of each shell, a broad range of high quantum yield (up to 45%) nanocrystal heterostructures with emission ranging from visible to NIR wavelengths (500-730 nm) were obtained. This versatile route to engineering the optical properties of nanocrystal heterostructures will provide new opportunities for applications in bioimaging and biolabeling.  相似文献   

7.
We reported a facile route for overcoating CdS and ZnS shells around colloidal CdSe core nanocrystals. To synthesize such double shelled core/shell nanocrystals, first, CdSe core nanocrystals were prepared in a much “greener” and cheap route, which did not involve the use of hazardous and expensive trioctylphosphine. Then, a low-cost and labor-saving route was adopted for the CdS and ZnS shell growth with the use of thermal decomposition of commercial available air stable single-source precursors cadmium diethyldithio-carbamate and zinc diethyldithiocarbamate in a non-coordinating solvent at intermediate temperatures. Powder X-ray diffraction patterns and transmission electron microscopy images confirm the epitaxial growth of the shell in the core/shell nanocrystals. The photoluminescence quantum yield of the resulting CdSe/CdS/ZnS core/shell nanocrystals can be as high as 90% in organic media and up to 60% after phase transfer into aqueous media. By varying the size of CdSe cores, the emission wavelength of the obtained core/shell nanostructures can span from 554 to 636 nm.  相似文献   

8.
Successive ion layer adsorption and reaction (SILAR) originally developed for the deposition of thin films on solid substrates from solution baths is introduced as a technique for the growth of high-quality core/shell nanocrystals of compound semiconductors. The growth of the shell was designed to grow one monolayer at a time by alternating injections of air-stable and inexpensive cationic and anionic precursors into the reaction mixture with core nanocrystals. The principles of SILAR were demonstrated by the CdSe/CdS core/shell model system using its shell-thickness-dependent optical spectra as the probes with CdO and elemental S as the precursors. For this reaction system, a relatively high temperature, about 220-240 degrees C, was found to be essential for SILAR to fully occur. The synthesis can be readily performed on a multigram scale. The size distribution of the core/shell nanocrystals was maintained even after five monolayers of CdS shell (equivalent to about 10 times volume increase for a 3.5 nm CdSe nanocrystal) were grown onto the core nanocrystals. The epitaxial growth of the core/shell structures was verified by optical spectroscopy, TEM, XRD, and XPS. The photoluminescence quantum yield (PL QY) of the as-prepared CdSe/CdS core/shell nanocrystals ranged from 20% to 40%, and the PL full-width at half-maximum (fwhm) was maintained between 23 and 26 nm, even for those nanocrystals for which the UV-vis and PL peaks red-shifted by about 50 nm from that of the core nanocrystals. Several types of brightening phenomena were observed, some of which can further boost the PL QY of the core/shell nanocrystals. The CdSe/CdS core/shell nanocrystals were found to be superior in comparison to the highly luminescent CdSe plain core nanocrystals. The SILAR technique reported here can also be used for the growth of complex colloidal semiconductor nanostructures, such as quantum shells and colloidal quantum wells.  相似文献   

9.
以溶于十八烯的Se作为Se前驱体,在无膦条件下制备得到了具有较高量子产率的Mn:ZnSe纳米晶.为了进一步提高纳米晶的稳定性和发光强度,运用外延生长的方法进行ZnS壳层包覆并得到了具有核-壳结构的Mn:ZnSe/ZnS纳米晶.X射线衍射、透射电子显微镜及吸收和荧光光谱测试结果表明,该方法合成的Mn:ZnSe纳米晶以及核-壳结构Mn:ZnSe/ZnS纳米晶均为闪锌矿结构,具有良好的单分散性,包覆ZnS外壳层后量子产率可达到60%以上.此外,对ZnS壳层厚度和Mn2+的掺杂量对Mn:ZnSe/ZnS纳米晶发光强度的影响及发光机制也进行了初步讨论.  相似文献   

10.
The interband and intraband spectra of colloidal II-VI CdS and CdSe quantum dot cores and CdSZnSe, CdSCdSe, CdSeCdS, and CdSeZnSe core/shell systems are reported. Infrared absorption peaks between 0.5 and 0.2 eV are observed. The slope of the intraband energy versus the first interband absorption feature is characteristic of the relative band alignments of the materials constituting the core and the shell and it is analyzed within an effective mass model. The analysis provides a new estimate of the band gap of zinc blende CdSe as well as the band offsets in zinc blende and wurtzite CdSe, CdS, and ZnSe.  相似文献   

11.
以巯基乙醇为修饰剂,在水溶液中合成了稳定的CdSe/CdS纳米晶,应用单因素法和多目标单纯形法探索合成条件。通过透射电镜观察所合成的纳米晶的形貌和大小,用紫外-可见吸收光谱和荧光光谱对其光学特性进行了表征。并且以L-色氨酸荧光量子产率0.14为标准,测量了合成的CdSe/CdS纳米晶的荧光量子产率为0.37。  相似文献   

12.
We report fluorescence blinking statistics measured from single CdSe nanorods (NRs) of seven different sizes with aspect ratios ranging from 3 to 11. This study also included core/shell CdSe/ZnSe NRs and core NRs with two different surface ligands producing different degrees of surface passivation. We compare the findings for NRs to our measurements of blinking statistics from spherical CdSe core and CdSe/ZnS core/shell nanocrystals (NCs). We find that, for both NRs and spherical NCs, the off-time probability distributions are well described by a power law, while the on-time probability distributions are best described by a truncated power law, P(tau(on)) approximately tau(on)(-alpha)e((-tau)(on)/(tau)(c)). The measured crossover time, tau(c), is indistinguishable within experimental uncertainty for core and core/shell NRs, as well as for core NRs with different ligands, for the same core size, indicating that surface passivation does not affect the blinking statistics significantly. We find that, at fixed excitation intensity, 1/tau(c) increases approximately linearly with increasing NR aspect ratio; for a given sample, 1/tau(c) increases very gradually with increasing excitation intensity. Examining 1/tau(c)versus the single-particle photon absorption rate for all samples indicates that the change in NR absorption cross section with sample size can account for some but not all of the differences in crossover time. This suggests that the degree of quantum confinement may be partially responsible for the aspect ratio dependence of the crossover time.  相似文献   

13.
The water-soluble L-cysteine-modified CdSe/CdS core/shell nanocrystals (expressed as CdSe/CdS/Cys nanocrystals) have been synthesized in aqueous by using L-cysteine as stabilizer. The size, shape, component and spectral property of CdSe/CdS/Cys nanocrystals were characterized by high-resolution transmission electron microscope (HRTEM), energy dispersive X-ray fluorescence (EDX), infrared spectrum (IR) and photoluminescence (PL). The results showed that the spherical CdSe/CdS/Cys nanocrystals with an average diameter of 2.3 nm have favorable fluorescent property, theirs photostability and fluorescence intensity are enhanced greatly after overcoating with CdS. The cysteine modified on the surface of core/shell CdSe/CdS nanocrystals renders the nanocrystals water-soluble and biocompatible. Based on the fluorescence quenching of the nanocrystals in the presence of calf thymus deoxyribonucleic acid (ct-DNA), a fluorescence quenching method has been developed for the determination of ct-DNA by using the nanocrystals as a novel fluorescence probe. The pH value of the system was selected at pH 7.4, with excitation and emission wavelength at 380 and 522 nm, respectively. Under the optimal conditions, the fluorescence quenching intensity of the system is linear with the concentration of ct-DNA in the range of 0.1-3.5 microg/mL (r=0.9987). The detection limit is 0.06 microg/mL. And two synthetic samples were analyzed satisfactorily.  相似文献   

14.
We present a novel method for the preparation of ultrasmall Au/CdSe core/shell particles. Au-Cd bialloy particles of 4.7 nm diameter were prepared as the precursor. The Cd component in the precursor reacted with the Se source at a temperature of 205 degrees C and was heated to 250 degrees C, leading to formation of a Au/CdSe core/shell structure. The sizes of Au/CdSe nanoparticles have a narrow distribution with an average size of 6.0 nm and Au core of 2.2 nm diameter. The X-ray diffraction pattern and the images of the high-resolution electron transmission microscopy show that the Au cores and the CdSe shells of Au/CdSe core/shell nanoparticles are both well crystallized, and the CdSe shells are in a cubic phase. The absorption spectrum of the Au/CdSe nanoparticles combines the absorption behaviors of the Au cores and the CdSe shells.  相似文献   

15.
The principal methods for the synthesis of highly luminescent core–shell colloidal quantum dots (QDs) of the most widely used CdSe, CdS, ZnSe, and other AIIBVI nanocrystals are reviewed. One‐pot versus multistage core synthesis approaches are discussed. The noninjection one‐pot method ensures slow, controllable growth of core nanocrystals starting from magic‐size seed recrystallization, which yields defect‐free cores with strictly specified sizes and shapes and a high monodispersity. Subsequent injection of shell precursors allows the formation of gradient core–shell QDs with a smooth potential barrier for electrons and holes, without strains or interfacial defects, and, as a consequence, a luminescence quantum yield (QY) approaching 100 %. These general approaches can also be applied to semiconductor core–shell QDs other than AIIBVI ones to cover the broad spectral range from the near‐UV to IR regions of the optical spectrum, thus displacing fluorescent organic dyes from their application areas.  相似文献   

16.
Xia Y  Zhu C 《The Analyst》2008,133(7):928-932
Type-II core/shell CdTe/CdSe quantum dots (QDs) were synthesized in aqueous medium by employing thiol-capped CdTe QDs as core template and CdCl(2) and Na(2)SeSO(3) as shell precursors, respectively. Compared with the original CdTe cores, the core/shell CdTe/CdSe QDs showed an obvious red-shifted emission with the color-tune capability to the near-infrared (NIR) wavelength, because of the formation of an indirect excitation. The prepared QDs exhibited high stability and moderate fluorescence quantum yields (10-20%), and their core/shell heterostructure was characterized by UV-vis absorption, steady-state and time-resolved fluorescence spectra, X-ray powder diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The fluorescence of the core/shell QDs could be markedly quenched by Cu(II), and approximate concentrations of other physiologically important cations, such as Zn(II), Ca(II), Na(I) and K(I) etc., had no effect on the fluorescence. Based on this, a simple and rapid method for Cu(II) determination was proposed using the NIR CdTe/CdSe QDs as fluorescent probes. Under optimal conditions, the response was linearly proportional to the concentration of Cu(II) between 0.05 to 50.0 x 10(-6) mol L(-1), the limit of detection was 2.0 x 10(-8) mol L(-1). The developed method was successfully applied to the detection of trace Cu(II) in real samples.  相似文献   

17.
The present study describes a stabilization of single quantum dot (QD) micelles by hydrophobic silica precursors and an extension of the silica layer to form a silica shell around the micelle. The obtained product consists of up to 92% of single nanocrystals (CdSe, CdSe/ZnS, or CdSe/ZnSe/ZnS quantum dots) in the silica micelles, coated with silica shell. The thickness of silica shell could vary, starting from 3 to 4 nm. Increasing the shell thickness increases the photoluminescent characteristics of QDs in aqueous solution. The silica-shelled single CdSe/ZnS QD micelles possess a high quantum yield in aqueous solution, a controlled small size, sharp photoluminescence spectra (fwhm approximately 30 nm), an absence of aggregation, and a high transparency. The presence of a hydrophobic layer between the QD and silica shell ensures an incorporation of other hydrophobic molecules (with interesting properties) in the close proximity of nanocrystal. Thus, it is possible to combine the characteristics of hybrid material with the priority of small size. The nanoparticles are amino functionalized and ready for conjugation. A comparatively good biocompatibility is demonstrated. The nanoparticles show ability for intracellular delivery and are noncytotoxic during long-term incubation with viable cells in the absence of light exposure, which makes them appropriate for cell tracing and drug delivery.  相似文献   

18.
Relatively monodisperse and highly luminescent Mn(2+)-doped zinc blende ZnSe nanocrystals were synthesized in aqueous solution at 100 °C using the nucleation-doping strategy. The effects of the experimental conditions and of the ligand on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of molar ratio of precursors and heating time on the optical properties of ZnSe:Mn nanocrystals. Using 3-mercaptopropionic acid as capping ligand afforded 3.1 nm wide ZnSe:Mn quantum dots (QDs) with very low surface defect density and which exhibited the Mn(2+)-related orange luminescence. The post-preparative introduction of a ZnS shell at the surface of the Mn(2+)-doped ZnSe QDs improved their photoluminescence properties, resulting in stronger emission. A 2.5-fold increase in photoluminescence quantum yield (from 3.5 to 9%) and of Mn(2+) ion emission lifetime (from 0.62 to 1.39 ms) have been observed after surface passivation. The size and the structure of these QDs were also corroborated by using transmission electron microscopy, energy dispersive spectroscopy, and X-ray powder diffraction.  相似文献   

19.
We demonstrate the solution-phase synthesis of CdS/CdSe, CdSe/CdS, and CdSe/ZnTe core/shell nanowires (NWs). On the basis of bulk band offsets, type-I and type-II heterostructures are made, contributing to the further development of low-dimensional heteroassemblies using solution-phase chemistry. Core/shell wires are prepared by slowly introducing shell precursors into a solution of premade core NWs dispersed in a noncoordinating solvent at moderate temperatures (215-250 degrees C). Resulting heterostructures are characterized through low- and high-resolution transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. From these experiments, initial shell growth appears to occur through either Stranski-Krastanov or Volmer-Weber island growth. However, beyond a critical shell thickness, nucleation of randomly oriented nanocrystals results in a polycrystalline coat. In cases where overcoating has been achieved, corresponding elemental analyses show spatially varying compositions along the NW radial direction in agreement with expected element ratios. Electronic interactions between the core and shell were subsequently probed through optical studies involving UV-vis extinction spectroscopy, photoluminescence experiments, and transient differential absorption spectroscopy. In particular, transient differential absorption studies reveal unexpected shell-induced changes in core NW Auger kinetics at high carrier densities. Previously seen three-carrier Auger kinetics in CdS (bimolecular in CdSe) NWs were suppressed by the presence of a CdSe (CdS) shell. These observations suggest the ability to influence NW optical/electrical properties by coating them with a surrounding shell, a method which could be important for future NW optical studies as well as for NW-based applications.  相似文献   

20.
Kinetic analysis on the nanocrystal solid-solution formation was performed by heat treating CdSe/ZnSe core/shell nanocrystals, synthesized via a typical TOP/TOPO approach, at different temperatures for different time periods. X-ray diffraction (XRD) peak shifts in Cd1-xZnxSe cores according to the solid-solution treatments were monitored and used for the estimation of the lattice parameter change. The degree of solid-solution formation was determined considering the compositional variation in Cd1-xZnxSe cores, which was obtained from the Vegard's law. The degree of solid-solution formation (x) was applied to Jander analysis, and an Arrhenius-type plot was produced using the slopes of Jander plots. The activation energy for solid-solution formation was determined as approximately 152 kJ/mol, which evidently indicates that the diffusion of Zn2+ ions in the CdSe-ZnSe system is the governing mechanism for the Cd1-xZnxSe solid-solution formation. The Jander equation to predict the solid-solution formation kinetics for the CdSe/ZnSe core/shell systems was completed using the reaction rate constant (k).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号