首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Tetraphenylantimony(V) O,O′-di-sec-butyl dithiophosphate (I) and tetraphenylantimony(V) O,O′-dicyclohexyl dithiophosphate (II) [Sb(C6H5)4{S2P(OR)2}] (R = sec-C4H9 or cyclo-C6H11) were obtained. Their structures and spectroscopic properties were studied by X-ray diffraction analysis and 13C and 31P CP/MAS NMR spectroscopy. The dithiophosphate (Dtph) ligands in complexes I and II were found to be coordinated in S-monodentate and S,S′-bidentate fashions, respectively (MAS NMR data). According to X-ray diffraction data, the coordination polyhedron of antimony in molecular structure I is a trigonal bipyramid with unusual monodentate coordination of the Dtph group in the axial position.  相似文献   

2.
Photocatalysis of biscarbonylrhenium complexes cis,trans-[Re(dmbpy)(CO)2(PR3) (PR′3)]+ (dmbpy=4,4′-dimethyl-2,2′-bipyridine: R, R′=Ph (1a +); p-FPh (1b +); R=Ph, R′=OEt (1c +); R, R′=O-i-Pr (1d +)) is reported for the first time. The rhenium complexes with two triarylphosphine ligands (1a +, 1b +) efficiently photocatalyzed CO2 reduction with triethanolamine as a sacrificial donor. On the other hand, the complexes with one or two trialkylphosphite ligand(s) (1c +, 1d +) had low photocatalytic abilities under the same reaction conditions.  相似文献   

3.
We report identification of the binding sites for an organometallic ruthenium anticancer complex [(η 6-biphenyl)Ru(en)Cl][PF6] (1; en = ethylenediamine) on the 15-mer single-stranded oligodeoxynucleotides (ODNs), 5′-CTCTCTX7G8Y9CTTCTC-3′ [X = Y = T (I); X = C and Y = A (II); X = A and Y = T (III); X = T and Y = A (IV)] by electrospray ionization mass spectrometry (ESI-MS) in conjunction with enzymatic digestion or tandem mass spectrometry (top-down MS). ESI-MS combined with enzymatic digestion (termed MS-based ladder-sequencing), is effective for identification of the thermodynamically-favored G-binding sites, but not applicable to determine the thermodynamically unstable T-binding sites because the T-bound adducts dissociate during enzymatic digestion. In contrast, top-down MS is efficient for localization of the T binding sites, but not suitable for mapping ruthenated G bases, due to the facile fragmentation of G bases from ODN backbones prior to the dissociation of the phosphodiester bonds. The combination of the two MS approaches reveals that G8 in each ODN is the preferred binding site for 1, and that the T binding sites of 1 are either T7 or T11 on I and IV, and either T6 or T11 on II and III, respectively. These findings not only demonstrate for the first time that T-bases in single-stranded oligonucleotides are kinetically competitive with guanine for such organoruthenium complexes, but also illustrate the relative merits of the combination of ladder-sequencing and top-down MS approaches to elucidate the interactions of metal anticancer complexes with DNA.   相似文献   

4.
The copper aminotropones Cu[ON(R′)C7H4R-4]2 [R = H, R′ = Me (13), Et (14), n-Pr (15), n-Bu (16), Bz (17), MenOCH2CH2 (20); R = i-Pr, R′ = Me (18), n-Pr (19), MenOCH2CH2 (21)] have been prepared from the corresponding aminotropones HN(R′)OC7H4R-4 (17) by reacting with copper(II) acetate in aqueous ethanol. 20, 21 contain the flavourant, menthol, as part of the ligand. The structures of 5 (R = H, R′ = Bz), a hydrogen-bonded dimer, 14 and 20, both incorporating square-planar, four-coordinate copper centres, have been determined by X-ray crystallography. The antibacterial activities of complexes 13, 17, 20 and 21 have been assayed against Staphylococcus waneri, an in vitro model of plaque inhibition effects, and found to be more active than a commercial toothpaste formulation, but less active than the O,O-chelated copper(II) complex of ethylmaltol.  相似文献   

5.
Quantum chemical calculations at the DFT level have been carried out for model complexes [Mo(P)(NH2)3] (1), [Mo(N)(NH2)3] (2), [Mo(PO)(NH2)3] (3), [Mo(NO)(NH2)3] (4), [Mo(CO)5(PO)]+ (5), and [Mo(CO)5(NO)]+ (6). The equilibrium geometries and the vibration frequencies are in good agreement with experimental and previous theoretical results. The nature of the Mo–PO, Mo–NO, Mo–PO+, Mo–NO+, Mo–P, and Mo–N bond has been investigated by means of the AIM, NBO and EDA methods. The NBO and EDA data complement each other in the interpretation of the interatomic interactions while the numerical AIM results must be interpreted with caution. The terminal Mo–P and Mo–N bonds in 1 and 2 are clearly electron-sharing triple bonds. The terminal Mo–PO and Mo–NO bonds in 3 and 4 have also three bonding contributions from a σ and a degenerate π orbital where the σ components are more polarized toward the ligand end and the π orbitals are more polarized toward the metal end than in 1 and 2. The EDA calculations show that the π bonding contributions to the Mo–PO and Mo–NO bonds in 3 and 4 are much more important than the σ contributions while σ and π bonding have nearly equal strength in the terminal Mo–P and Mo–N bonds in 1 and 2. The total (NH2)3Mo–PO binding interactions are stronger than for (NH2)3Mo–P which is in agreement with the shorter Mo–PO bond. The calculated bond orders suggest that there are only (NH2)3Mo–PO and (NH2)3Mo–NO double bonds which comes from the larger polarization of the σ and π contributions but a closer inspection of the bonding shows that these bonds should also be considered as electron-sharing triple bonds. The bonding situation in the positively charged complexes [(CO)5Mo–(PO)]+ and [(CO)5Mo–(NO)]+ is best described in terms of (CO)5Mo → XO+ donation and (CO)5Mo ← XO+ backdonation (X = P, N) using the Dewar–Chatt–Duncanson model. The latter bonds are stronger and have a larger π character than the Mo-CO bonds.  相似文献   

6.
The reactions of substituted dichlorosilane monomers,Cl2SiRR′, with two equivalents of lithium aryl acetylide(1), LiC ≡ C-4-C6H4-Ph, afford RR′Si(C ≡ C-4-C6H4-Ph)2 (6: R,R′ =CH3; 7: R = CH3, R′ = CH=CH2; 8: R,R′ = Ph). An isomeric mixture of meso, (R,R)- and (S,S)-Bis[2-(N,N-dimethylaminomethyl)ferrocenyl]dichlorosilane (5) was used as starting chlorosilyl compound for reaction with LiC ≡ C-4-C6H4-Ph to give (FcN)2Si(C ≡ C-4-C6H4-Ph)2 (9). A detailedcharacterization of 6, 7, 8 and 9 has been carried out by 1H-NMR, 13C-NMR, 29Si-NMR, IR and UV-VIS spectroscopy. The crystal structure of 9 has been determined by X-ray diffraction analysis.  相似文献   

7.
The heteroelement-containing alkylidene imide complexes with molybdenum and tungsten Et3SiCH=Mo(NAr)(OR)2 (I), Et3 ECH=W(NAr)(OR)2 (E = Si (II), Ge (III); Ar = 2,6-i-Pr2C6H3; R=CMe2 CF3) and π-complex (RO)2(ArN)Mo(CH2=CH-GeEt3) (IV) were synthesized by the reaction of Alkyl-CH=M(NAr) (OR)2 (M=Mo, W; Alkyl = t-Bu, PhMe2C) with organosilicon and organogermanium vinyl reagents Et3ECH=CH2 (E = Si, Ge). The structure of compounds I–III was determined by X-ray diffraction (XRD). The complexes I–IV are active initiators of metathesis polymerization of cycloolefins.  相似文献   

8.
The racemisation ofcyclo-(l-Pro?l-Pro) (2) with metal amides in liq. ammonia was examined. The K-kation causes more extensive racemisation than Na-kation, which in turn is more effective than Li+. This, the racemisation of2 int-butyl alcohol with K+C6H5O? and the data gained from corresponding deuterated medium show that the racemisation of2 proceeds in two steps: in the first, the less stabletrans-cyclo-(l-Pro?d-Pro) (3) is formed, followed by the rapid conversion of3 to a mixture ofcyclo-(l-Pro?l-Pro) andcyclo-(d-Pro?d-Pro) in the second step.  相似文献   

9.
The gallium and aluminum complexes containing the redox-active ligand (dpp-bian)Ga-Ga(dpp-bian) (1), (dpp-bian)Al-Al(dpp-bian) (2), or (dpp-bian)AlI(Et2O) (3) (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) react with alkyl butynoates Me-C≡C-CO2R (R = Me, Et) to form C-C bonds between the dpp-bian ligand and alkyne. The reaction of complex 1 with methyl 2-butynoate and 4-chloroaniline in a molar ratio of 1: 2: 2 affords 7-(2,6-diisopropylphenyl)-10-methylacenaphtho[1,2-b]pyridin-8(7H)-one (4) containing no gallium. In the reaction of complex 2 with methyl 2-butynoate, alkyne is inserted into the skeleton of the dpp-bian ligand to form 4-(dpp-AIE)-9-(2,6-diisopropylphenyl)-8-(1,3-dpp-2MBIDP)-3,7-dimethoxy-1,5-dialuma-9-aza-2,6-dioxabicyclo[3.3.1]nonadiene-3,7 (5) (dpp-AIE is 1-[2-(2,6-diisopropylphenylimino)acenaphthen-1(2H)-ylidene]ethyl; 1,3-dpp-2MBIDP is 1,3-bis(2,6-diisopropylphenylimino)-2-methyl-2,3-dihydro-1H-phenalen-2-yl). The reactions of complex 3 with methyl and ethyl 2-butynoates afford dimeric derivatives [-OC(OR)=C(2,3-dpp-1MBIDP)Al(I)-]2 (2,3-dpp-1MBIDP is 2,3-bis(2,6-diisopropylphenylimino)-1-methyl-2,3-dihydro-1H-phenalen-2-yl; R = Me (6), Et (7)). The reaction of complex 3 with methyl 2-butynoate gives the product isomeric to compound 6: [-OC(OCH3)=C(1,3-dpp-2MBIDP)Al(I)-]2 (8), which cleaves THF resulting in complex [-OC(OCH3)=C(1,3-dpp-2MBIDP)Al(OC4H8I)-]2 (9). Complex (dpp-bian)Al(acac) (10), obtained by the reduction of dpp-bian with aluminum in the presence of Al(acac)3 in diethyl ether at ambient temperature, is inert towards acetylene, phenylacetylene, and alkyl butynoates. Compounds 47 and 10 were characterized using IR spectroscopy, and compounds 4, 7, and 10 were additionally characterized by 1H NMR spectroscopy. The structures of compounds 47, 9, and 10 were determined by X-ray diffraction analysis.  相似文献   

10.
The reaction of PtRu5(CO)166-C),1 with 3-hexyne in the presence of UV irradiation produced two new electron-rich platinum-ruthenium cluster complexes PtRu5(CO)13(μ-EtC2Et)(μ3-EtC2Et)(μ5-C),2 (20% yield) and Pt2Ru6(CO)17(μ-η5-Et4C5)(μ3-EtC2Et) (μ6-C),3 (7% yield). Both compounds were characterized by single-crystal X-ray diffraction analyses. Compound2 contains of a platinum capped square pyramidal cluster of five ruthenium atoms with the carbido ligand located in the center of the square pyramid. A EtC2Et ligand bridges one of the PtRu2 triangles and the Ru-Pt bond between the apical ruthenium atom and the platinum cap. The structure of compound3 consists of an octahedral PtRu5 cluster with an interstitial carbido ligand and a platinum atom capping one of the PtRu2 triangles. There is an additional Ru(CO)2 group extending from the platinum atom in the PtRu5 cluster that contains a metallated tetraethylcyclopentadienyl ligand that bridges to the platinum capping group. There is also a EtC2Et ligand bridging one of the PtRu2 triangular faces to the capping platinum atom. Compounds2 and3 both contain two valence electrons more than the number predicted by conventional electron counting theories, and both also possess unusually long metal-metal bonds that may be related to these anomalous electron configurations. Crystal data for2, space group Pna21,a=19.951(3) Å,b=9.905(2) Å,c=17.180(2) Å,Z=2, 1844 reflections,R=0.036; for3, space group Pna21,α=13.339(1) Å,b=14.671(2) Å,c=11.748(2) Å, α=100.18(1)°, β=95.79(1)°, γ=83.671(9)°,Z=2, 3127 reflections,R=0.026.  相似文献   

11.
Two novel binuclear metal-organic coordination complexes [M2(Zaltoprofen)2(Bipy)2] [M = Cd (I), Zn (II); Zaltoprofen = 5-(1-carboxyethyl)-2-(phenylthio)phenylacetic acid, Bipy = 2,2′-bipyridine) have been synthesized under hydrothermal conditions and characterized by single crystal X-ray diffraction, elemental analysis, IR and electronic spectroscopy, powder X-ray diffraction, and fluorescent properties. Complexes I, II crystallize isomorphously in the monoclinic space group P21/c. Structural analysis shows that the M(II) atom of I and II is coordinated with four oxygen atoms from the carboxyl group of the Zaltoprofen together with two nitrogen atoms from the Bipy. The 3D structures of the complexes are stabilized by π-π stacking interactions.  相似文献   

12.
Selective Preparation of Twofold Diorganophosphido-bridged Metallatetrahedranes [Re2(MPR3)2(μ-PR2)2(CO)6] with Re2M2 Metal Core (M = Au, Ag) The reaction of the in situ prepared salt Li[Re2(AuPR)(μ-PR2)(CO)7Cl] (R = R′ = Cy ( 1 a ), R = Cy, R′ = Ph ( 1 b ), R = Ph, R′ = Cy ( 1 c ), R = Ph, R′ = Et ( 1 d ), R = Ph, R′ = Ph ( 1 e )) with one equivalent HPR in methanolic solution at room temperature yields the neutral cluster complexes [Re2(AuPR)(μ-PR2)(CO)7(ax-HPR) (R = R′ = R″ = Cy ( 2 a ), Ph ( 2 b ), R = R′ = Cy, R″ = Et ( 2 c ), R = Cy, R′ = R″ = Ph ( 2 d ), R = Cy, R′ = Ph, R″ = Et ( 2 e ), R = R″ = Ph, R′ = Et ( 2 f ), R = Ph, R′ = Cy, R″ = Et (2 g)). Photochemically induced these complexes react in the presence of the organic base DBU in THF solution to give the doubly phosphido bridged anions Li[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6], which were characterized as salts PPh4[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6] (R = R′ = R″ = Ph ( 3 a ), R = R′ = Ph, R″ = Cy ( 3 b ), R = Ph, R′ = Cy, R″ = Et ( 3 c ), R = R″ = Ph, R′ = Et ( 3 d )). These precursor complexes 3 then react with one equivalent of ClMPR (M = Au, Ag) to doubly phosphido bridged metallatetrahedranes [Re2(MPR3)2(μ-PR2)(μ-PR)(CO)6] (M = Au, R = R′ = R″ = Ph ( 4 a ), M = Au, R′ = Et, R = R″ = Ph ( 4 b ), M = Au, R = R′ = Ph, R″ = Cy ( 4 c ), M = Au, R = Cy, R′ = Ph, R″ = Et ( 4 d ), M = Ag, R = R′ = R″ = Ph ( 4 e )). All isolated cluster complexes were characterized and identified by the following analytical methods: NMR- (1H, 31P) and ν(CO) IR-spectroscopy and, additionally, complexes 2 b , 4 a and 4 e by X-ray structure analysis.  相似文献   

13.
The anions, [M(CO)6-n(NCBH3)n]n (n=2, M=Cr(1); n=3, M=Cr(2), Mo(3), W(4)), were prepared either from the reactions of sodium cyanotrihydroborate with group 6 transition metal hexacarbonyls, M(CO)6 (M=Cr, Mo, W), or through the reactions of M(CO)3(CH3CN)3 (M=Cr, W) with sodium cyanotrihydroborate. The cyanotrihydroborate ligand bonds to the metal through a nitrogen atom, which was confirmed by the Infrared, proton and boron NMR spectroscopies. Crystal structures of the above complexes were determined by single crystal X-ray diffraction analyses. A cis configuration is found in 1. Molecular structures of 2, 3, and 4 are similar and a facial configuration is observed.  相似文献   

14.
A reaction of previously synthesized germylenes and stannylenes based on aminobisphenols RN{CH2[(5-R´)(3-But)C6H2(2-O—)]}2MII, M = Ge, R = CH2(2-Py), R´ = But (1); M = Ge, R = Et, R´ = Me (2); M = Sn, R = CH2(2-Py), R´ = But (3); M = Sn, R = Et, R´ = Me (4), containing (tetrylenes 1 and 3) or not containing (tetrylenes 2 and 4) a group capable of additional donation, with allyl bromide leads to the products of the insertion of tetrylenes into the C—Br bond: RN{CH2[(5-R´)(3-But)C6H2(2-O—)]}2M(Br)All, M = Ge, R = CH2(2-Py), R´ = But (5); M = Ge, R = Et, R´ = Me (6); M = Sn, R = CH2(2-Py), R´ = But (7); M = Sn, R = Et, R´ = Me (8). The structures of obtained derivatives were confirmed by NMR spectroscopy and elemental analysis. The structures of compounds 4, 5, and 7 were studied by X-ray crystallography. Stannylene 4 was found to be monomeric in the solid phase: the coordination number of the Sn atom is 3. The insertion products 5 and 7 are characterized by the coordination number 6 for the central atom.  相似文献   

15.
The preparation of α , ω-oligosiloxanediolsHOSiMe2O(SiPh2O)nSiMe2OH(58; n=1–4) by the mild oxidation of thecorresponding organo-H-siloxaneHSiMe2O(SiPh2O)nSiMe2H(14; n = 1–4) using Pearlman's catalyst,Pd(OH2)/C, is reported. Compounds 57 possessnew hydrogen bonding modes, whose influences on the Si–O chainconformation are discussed and compared with the published analoguesHOSiPh2OSiPh2OSiPh2OH (9),HOSit-Bu2OSiMe2OSit-Bu2OH (10) andHOSiPh2OSiPh2OSiPh2OSiPh2OH(11), whereas compound 8 appears to be polycrystalline.Preliminary results of the HCl-catalysed condensation of58 are also reported, which provided complex mixtures ofoligomeric products in the case of 5 and 8, and (almost)exclusivelycyclo-(Me2SiO)2(Ph2SiO)2(12) andcyclo-(Me2SiO)2(Ph2SiO)3(13) in the case of 6 and 7, respectively. Compounds57 and 13 were investigated by X-raycrystallography.  相似文献   

16.
A bisphosphine in which a PhP-PPh bond bridges 1,8-positions of naphthalene, 1,2-dihydro-1,2-diphenyl-naphtho[1,8-cd]-1,2-diphosphole (1), was used as a bridging ligand for the preparation of dinuclear group 6 metal complexes. Free trans-1, a more stable isomer having two phenyl groups on phosphorus centers mutually trans with respect to a naphthalene plane, was allowed to react with two equivalents of M(CO)5(thf) (M = W, Mo, Cr) at room temperature to give dinuclear complexes (OC)5M(μ-trans-1)M(CO)5 (M = W (2a), Mo (2b), Cr (2c)). The preparation of the corresponding dinuclear complexes bridged by the cis isomer of 1 was also carried out starting from the free trans-1 in the following way. Mono-nuclear complexes M(trans-1)(CO)5 (M = W (3a), Mo (3b), Cr (3c)) which had been prepared by a reaction of trans-1 with one equivalent of the corresponding M(CO)5(thf) (M = W, Mo, Cr) complex, were heated in toluene, wherein a part of the trans-3a-c was converted to their respective cis isomer M(cis-1)(CO)5. Each cis trans mixture of the mono-nuclear complexes 3a-c was treated with the corresponding M(CO)5(thf) to give a cis trans mixture of the respective dinuclear complexes 2a-c. The cis isomer of the ditungsten complex 2a was isolated, and its molecular structure was confirmed by X-ray analysis, showing a shorter W?W distance of 5.1661(3) Å than that of 5.8317(2) Å in trans-2a.  相似文献   

17.
The effect of β-trimethylsilyl (TMS) substituent on the structure, stability, natural charges, electrostatic potential map, natural bond orders, rotational energy barrier, and hyperconjugative interactions of five acyclic β-silyl carbocation derivatives of RR′C+–CH2Si(Me)3 including α-dimethyl 1 (R,R′ = Me), α-methyl phenyl 2 (R = Me, R′ = Ph), α-methyl para-aminophenyl 3 (R = Me, R′ = p-NH2Ph), α-methyl para-nitrophenyl 4 (R = Me, R′ = p-NO2Ph) and diphenyl 5 (R,R′ = Ph) was investigated in the gas phase and in solution using polarized continuum model (PCM) at B3LYP/6-311 ++G** level of theory. The resonance structures weighting of cations 15 were determined using natural resonance theory (NRT). The contribution of carbenium ion (RR′C+–CH2Si(Me)3) and silylium ion (RR′C=CH2 Si(Me) 3 + ) to the stability depend upon substituents. The former form dominants when R,R′ = Ph, but the latter is major the contributor when R,R′ = Me. The weighting of carbocation forms of β-silyl benzyl cation overwhelms silylium cation due to the delocalization of positive charge on the phenyl ring. The calculated molecular orbital (MO) diagrams, energy decomposition analysis (EDA) and 29Si and 13C nuclear magnetic resonance (NMR) chemical shifts complement these predictions.  相似文献   

18.
Eight chiral vinylterphenyl monomers,(+)-2,5-bis{4′-[(S)-1″-methylpropyloxy]phenyl}styrene(Ia),(+)-2,5-bis{4′-[(S)-2″-methylbutyloxy]phenyl}styrene(Ib),(+)-2,5-bis{4′-[(S)-3″-methylpentyloxy]phenyl}styrene(Ic),(+)-2,5-bis{4′-[(S)-4″-methylhexyloxy]phenyl}styrene(Id),(?)-2,5-bis{4′-[(R)-1″-methylpropyloxy]phenyl}styrene(Ie),(+)-2-{4′-[(S)-1″-methylpropyloxy]phenyl}-5-{4′-[(R)-1″-methylpropyloxy]phenyl}styrene(IIa),(?)-2-{4′-[(R)-1″-methylpropyloxy]phenyl}-5-{4′-[(S)-1″-methylpropyloxy]phenyl}styrene(IIb),and(+)-2-{4′-[(S)-2′′-methylbutyloxy]phenyl}-5-{4′-[(S)-1″-methylpropyloxy]phenyl}styrene(III),were synthesized and radically polymerized.These molecules were designed to further understand long-range chirality transfer in radical polymerization and to possibly tune the chiroptical properties of the polymers by varying the spatial configuration,position,and various combination of the stereogenic centers at the ends of p-terphenyl pendants.The resultant polymers adopted helical conformations with a predominant screw sense.When the stereogenic centers ran away from the terphenyl group as in Ib?d,the corresponding polymers changed the direction of optical rotation in an alternative way and showed no obvious stereomutation upon annealing in tetrahydrofuran.The two stereogenic centers of IIa,IIb,and III acted concertedly in chiral induction,whereas those of Ia and Ie played a counteractive role.The five polymers derived from Ia,Ie,IIa,IIb,and III underwent stereomutation when annealed in tetrahydrofuran.The polymers PIa?e had good thermal stability and high glass transition temperatures(Tgs).They generated liquid crystalline phases at above Tgs that could be kept upon cooling,with the exception of PIe.This result was consistent with the extended helical structures.  相似文献   

19.
The reaction of CpFe(CO)2TePh (I) with ferricinium hexafluorophosphate as an oxidant affords ionic complex {[CpFe(CO)2]2(μ-TePh)}+PF 6 ? (II) with the simultaneous formation of diphenylditellurium. The decarbonylation of compound II by Me3NO followed by the addition of complex I affords trinuclear complex {[CpFe(CO)2(μ-TePh)]2Fe(CO)Cp}PF6 (III). The corresponding tetrafluoroborate (IV) is synthesized similarly. The heating of compound I with PPh3 gives CpFe(CO)(PPh3)TePh (V) that reacts with ionic complex [CpMn(CO)2(NO)]PF6 (VI) to form binuclear heterometallic ionic complex [CpFe(CO)(PPh3)(μ-TePh)Mn(CO)(NO)Cp]PF6 (VII). A similar reaction of Cp′Fe(CO)2TePh (Cp′ is methylcyclopentadienyl) with compound VI affords heterometallic [Cp′Fe(CO)2(μ-TePh)Mn(CO)(NO)Cp]PF6 (VIII). The structures of compounds II, IV, VII, and VIII are determined by X-ray diffraction analysis (CIF files CCDC 963285, 963286, 963288, and 963289, respectively).  相似文献   

20.
The reaction of [Et4N]2[Fe3(μ 3-Q)(CO)9] (Q=Se ([Et4N]2[1b]), Te ([Et4N]2[1c])) with [Cp*M(CH3CN)3][CF3SO3]2 (M=Rh, Ir) leads to the addition of a Cp*M2+ unit to a Fe2Q face of the initial cluster. In this way four new heteronuclear clusters [MFe3(μ 4-Q)(CO)9Cp*] (M=Rh (2b, c); M=Ir (3b, c)) were obtained possessing a butterfly-shaped cluster core bridged by a μ 4-Q unit. Furthermore, reaction with the Ir starting complex leads to the metal-substituted derivatives [IrFe2(μ 3-Q)(CO)7Cp*] (4b, c) in lower yields, whose structures consist of a triangular metal core capped by a μ 3-Q ligand. The products were comprehensively characterised by spectroscopic methods and the molecular structures of 2b, 3c, and 4c were established by single crystal X-ray diffraction measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号