首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ni amide and hydroxide complexes [(PCP)Ni(NH2)] ( 2 ; PCP=bis‐2,6‐di‐tert‐butylphosphinomethylbenzene) and [(PCP)Ni(OH)] ( 3 ) were prepared by treatment of [(PCP)NiCl] ( 1 ) with NaNH2 or NaOH, respectively. The conditions for the formation of 3 from 1 and NaOH were harsh (2 weeks in THF at reflux) and a more facile synthetic route involved protonation of 2 with H2O, to generate 3 and ammonia. Similarly the basic amide in 2 was protonated with a variety of other weak acids to form the complexes [(PCP)Ni(2‐Me‐imidazole)] ( 4 ), [(PCP)Ni(dimethylmalonate)] ( 5 ), [(PCP)Ni(oxazole)] ( 6 ), and [(PCP)Ni(CCPh)] ( 7 ), respectively. The hydroxide compound 3 , could also be used as a Ni precursor and treatment of 3 with TMSCN (TMS=trimethylsilyl) or TMSN3 generated [(PCP)Ni(CN)] ( 8 ) or [(PCP)Ni(N3)] ( 9 ), respectively. Compounds 3–7 , and 9 were characterized by X‐ray crystallography. Although 3 , 4 , 6 , 7 , and 9 are all four‐coordinate complexes with a square‐planar geometry around Ni, 5 is a pseudo‐five‐coordinate complex, with the dimethylmalonate ligand coordinated in an X‐type fashion through one oxygen atom, and weakly as an L‐type ligand through another oxygen atom. Complexes 2–9 were all reacted with carbon dioxide. Compounds 2 – 4 underwent facile reaction at low temperature to form the κ1O carboxylate products [(PCP)Ni{OC(O)NH2}] ( 10 ), [(PCP)Ni{OC(O)OH}] ( 11 ), and [(PCP)Ni{OC(O)‐2‐Me‐imidazole}] ( 12 ), respectively. Compounds 10 and 11 were characterized by X‐ray crystallography. No reaction was observed between 5 – 9 and carbon dioxide, even at elevated temperatures. DFT calculations were performed to model the thermodynamics for the insertion of carbon dioxide into 2 – 9 to form a κ1O carboxylate product and understand the pathways for carbon dioxide insertion into 2 , 3 , 6 , and 7 . The computed free energies indicate that carbon dioxide insertion into 2 and 3 is thermodynamically favorable, insertion into 8 and 9 is significantly uphill, insertion into 5 and 7 is slightly uphill, and insertion into 4 and 6 is close to thermoneutral. The pathway for insertion into 2 and 3 has a low barrier and involves nucleophilic attack of the nitrogen or oxygen lone pair on electrophilic carbon dioxide. A related stepwise pathway is calculated for 7 , but in this case the carbon of the alkyne is significantly less nucleophilic and as a result, the barrier for carbon dioxide insertion is high. In contrast, carbon dioxide insertion into 6 involves a single concerted step that has a high barrier.  相似文献   

2.
Treatment of oxaphosphirane complex 1 , triflic acid (TfOH), and various aldehydes yielded 1,3,4‐dioxaphospholane complexes 5a , b – 7a , b after deprotonation with NEt3. In addition to NMR spectroscopy, IR spectroscopy, and MS data, the X‐ray structures of complexes 5a and 7a were determined. 31P NMR spectroscopic monitoring and DFT calculations provided insight into the reaction course and revealed the transient TfOH 1,3,4‐dioxaphospholanium association complex TfOH‐ 5a , b and/or TfOH‐ 5a , b′ as key reactive intermediates. Furthermore, it was observed that the five‐membered ring system was cleaved upon warming and yielded side‐on (E,Z)‐methylenephosphonium complexes 8a , b if deprotonation did not occur at low temperature. Overall, a novel temperature‐ and acid‐dependent construction and deconstruction process of the 1,3,4‐dioxaphospholane ring system is described.  相似文献   

3.
The novel N,P,C‐cage complexes 5 a – f and 6 a – f have been obtained by the reaction of the P‐pentamethylcyclopentadienylphosphinidene complex 2 , generated thermally from 2H‐azaphosphirene complex 1 , with N‐methyl‐C‐arylcarbaldimines 3 a – f . Li/Cl phosphinidenoid complex 8 reacted with 3 a , b to give N,P,C‐cage complexes 6 a , b , whereas with 3 c – f , complexes 6 c – f were obtained in negligible amounts only. Both types of ligand N,P,C‐cage structures 5 and 6 were found to be in an unprecedented equilibrium, with 5 a , f as the predominant species. Transient electrophilic terminal phosphinidene complexes 10 a – f serve as intermediates in both ligand interconversions ( 5 a , f ? 6 a , f ), as evidenced through trapping reactions with phenylacetylene and N‐methyl‐C‐phenylcarbaldimine, thus leading to the novel N,P,C‐cage complexes 13 b and 15 . DFT calculations predicted a small difference in the relative energies of the two types of N,P,C‐cage ligands, and a remarkable stabilisation of the aminophosphinidene complex 10 as the common precursor, thereby providing an insight into this surprising 5‐ring–3‐ring interconversion. In depth analysis of intermediate 10 revealed the occurrence of both through‐bond (conventional inductive/mesomeric effects) and through‐space (non‐covalent interactions) mechanisms, which amount to 67.8 and 14.4 kcal mol?1, respectively, and account for the remarkable stabilisation of this intermediate.  相似文献   

4.
Herein, we present an innovative, novel, and highly convenient protocol for the synthesis of 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ), which have been delineated from the reaction of 4‐sec‐amino‐2‐oxo‐6‐aryl‐2H‐pyran‐3‐carbonitrile ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) and 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐benzo[h]chromene‐3‐carbonitriles ( 9a , 9b , 9c , 9d , 9e ) with 2‐acetylpyridine ( 5 ) through the ring transformation reaction by using KOH/DMF system at RT. The salient feature of this procedure is to provide a transition metal‐free route for the synthesis of asymmetrical 1,3‐teraryls like 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ). The novelty of the reaction lies in the creation of an aromatic ring from 2H‐pyran‐2‐ones and 2H‐benzo[h]chromene‐3‐carbonitriles via two‐carbon insertion from 2‐acetylpyridine ( 5 ) used as a source of carbanion.  相似文献   

5.
A wide variety of 2,5‐di(2‐pyridyl)pyrroles (dppHs) substituted at the C3 and C4 positions of the pyrrole core were obtained by direct condensation of a 2‐pyridylcarboxaldehyde (2 equiv), an α‐methylene ketone with at least one electron‐withdrawing substituent and ammonium acetate. A novel 2,5‐di(1,10‐phenanthrolin‐2‐yl)pyrrole was also characterised. The dppHs provide a direct, quick entry to dipyridylpyrrolato (dpp?)–metal complexes. The meridial tridentate dpp? ligand is a useful anionic analogue of the terpyridyl ligand. The first (dpp)Ru complexes are described; the 3,4‐substitution of the central pyrrole significantly perturbs the potentials of the redox processes of these complexes. A [(dpp)Ru(bpy)(MeCN)]+ (bpy=2,2′‐bipyridine) complex is an electrocatalyst for the reductive disproportionation of carbon dioxide to carbon monoxide and the carbonate ion.  相似文献   

6.
A series of efficient catalysts, based on zinc alkoxides coordinated with NNO‐tridentate Schiff‐base ligands (L1H‐L6H), for ring opening polymerization of L ‐lactide have been prepared. The reactions of diethyl zinc (ZnEt2) with L1H‐L6H yielded [(μ‐L)ZnEt]2 ( 1a–6a ), respectively. Further reaction of compounds 1a–6a with benzyl alcohol (BnOH) produced the corresponding compounds of [LZn(μ‐OBn)]2 ( 1b–6b), respectively. X‐ray crystal structural studies reveal that all of these compounds 1a–6a are dimeric bridging through the phenolato oxygen atoms of the Schiff‐base ligand. However, the molecular structures of 1b–6b show a dimeric character bridging through the benzylalkoxy oxygen atoms. Ring‐opening polymerization of L ‐lactide, initiated by 1b–6b , proceeds rapidly with good molecular weight control and yields polymer with a very narrow molecular weight distribution. Experimental results show that the substituents on the imine carbon of the NNO‐ligand affect the reactivity of zinc complexes dramatically. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6466–6476, 2008  相似文献   

7.
In contrast to cyclic π‐conjugated hydrocarbons, the coordination chemistry of inorganic heterocycles is less developed. Dicarbondiphosphides stabilized by N‐heterocyclic carbenes (NHCs) NHC→C2P2←NHC ( 1 a , b ) (NHC=IPr or SIPr) contain a four‐membered C2P2 ring with an aromatic 6π‐electron configuration. These heterocycles coordinate to a variety of complex fragments with metals from groups 6, 9, and 10, namely [M0(CO)3] (M=Cr, Mo), [CoI(CO)2]+, or [NiIIBr2], through an η4‐coordination mode, leading to complexes 2 a , b , 3 a , b , 5 a , b , and 6 a , b , respectively. These complexes were characterized by X‐ray diffraction methods using single crystals, IR spectroscopy, and DFT calculations. In combination these methods indicate that 1 a , b behave as exceptionally strong 6π‐electron donors.  相似文献   

8.
Based on the a ligand BDPPZ [(9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone] (1) and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes, [Ru(bpy)2L](PF6)2 (2), [Ru(phen)2L](PF6)2 (3), [Ru(dafo)2L](PF6)2 (4), [Ru(dcbpy)2L](PF6)2 (5) and [RuL3](PF6)2 (6) (where, L = ligand, bpy = 2,2′‐bipyridine, phen = 1,10‐phenantroline, dafo = 4,5‐diazafluoren‐9‐one and dcbpy = 3,3′‐dicarboxy‐2,2′‐bipyridine), have been synthesized and characterized by elemental analysis, UV–vis, FT‐IR, 1H and 13C‐NMR spectra (for ligand), molar conductivity measurements and X‐ray powder techniques. The electrochemical parameters of the substituted ligand and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes are reported by cyclic voltammetry. UV–vis spectroscopy is used to compare the differences between the conjugated π systems in this ligand and its Ru(II) metal complexes. The polypyridyl hetero‐ and homoleptic Ru(II) metal complexes also tested as catalysts for the formation of cyclic organic carbonates from carbon dioxide and liquid epoxides which served as both reactant and solvent. The results showed that the [Ru(L)3](PF6)2 (6) complex is more efficient than the other Ru(II) complexes for the formation of cyclic organic carbonates from carbon dioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A series of zinc benzylalkoxide complexes, [LnZn(μ‐OBn)]2 (L = L 1 H – L 5 H ), supported by NNO‐tridentate ketiminate ligands with various electron withdrawing‐donating subsituents have been synthesized and characterized. X‐ray crystal structural studies revealed that complexes 2b and 4b are dinuclear bridging through the benzylalkoxy oxygen atoms with penta‐coordinated metal centers. All the metal complexes have acted as efficient initiators for the ring‐opening polymerization of L ‐lactide (within 12 min, 0 °C). Remarkably, a molecular weight of PLLA up to 580,000 can be achieved using [(L5Zn(μ‐OBn)]2 ( 5b ) as an initiator. The kinetic studies for the polymerization of L ‐lactide with complex 3b at ?10 °C corresponded to first‐order reactions in the monomer. The ring‐opening polymerization (ROP) of ε‐caprolactone, ε‐decalactone, β‐butyrolactone and their copolymer with complex 3b was investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
The 10‐halo (Cl or Br) anthracene‐9‐nitrile oxides (1a,b) were obtained directly from the treatment of 9‐anthracenylaldoxime with N‐halosuccinimide (NCS or NBS) in DMF. The 3‐(10′‐halo‐9′‐anthracenyl)‐5‐isoxazolecarboxylic esters ( 5a,b and 6a,b ) were prepared via 1 ,3‐dipolar cycloaddition between the obtained nitrile oxides 1a (or 1b ) and two different dipolarophiles: ethyl β‐pyrrolidinocrotonate (an enamine of ethyl acetoacetate) or dimethyl acetylenedicarbox‐ylate (DMAD) respectively. The 10 (or 10′)‐ position of the anthracene in either anthracene‐9‐nitrile oxide or 3‐(9′‐anthracenyl) isoxazole molecules (3,4) is readily halogenated by N‐halosuc‐cinimide in DMF. X‐ray studies showed that 5a possesses two aromatic ring systems that lie at 74.4° from coplanarity. The bond linking the two ring systems is 1.4893(18) Å, indicating only partial conjugation between the two ring systems. The crystal lattice showed unique head‐to‐tail intermolecular stacking of anthracene rings.  相似文献   

11.
Carbonyl group‐containing organometallic intramolecular‐coordination five‐membered ring compounds are easily synthesized by the following five reaction methods: (1) cyclometalation, especially, orthometalation reactions; (2) the reactions of the moieties of an unsaturated carbon? carbon bond attached to a carbonyl group (C?C? CO, C?C? CO); (3) the reactions of an unsaturated carbon? carbon bond with carbon monoxide (C?C and CO, C?C and CO); (4) carbonylative ring expansion reactions; and (5) others. These compounds are very easily and regio‐specifically synthesized with many kinds of metal compounds, including both transition metals and main group metals. Many of such the reactions are easily applied to organic syntheses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The photoelectrochemical (PEC) carbon dioxide reduction process stands out as a promising avenue for the conversion of solar energy into chemical feedstocks, among various methods available for carbon dioxide mitigation. Semiconductors derived from cheap and abundant elements are interesting candidates for catalysis. Whether employed as intrinsic semiconductors or hybridized with metallic cocatalysts, biocatalysts, and metal molecular complexes, semiconductor photocathodes exhibit good performance and low overpotential during carbon dioxide reduction. Apart from focusing on carbon dioxide reduction materials and chemistry, PEC cells towards standalone devices that use photohybrid electrodes or solar cells have also been a hot topic in recent research. An overview of the state‐of‐the‐art progress in PEC carbon dioxide reduction is presented and a deep understanding of the catalysts of carbon dioxide reduction is also given.  相似文献   

13.
The reactions of 2‐amino‐4,5‐dihydro‐3‐furancarboxarnides 1a,b with cyanomethylene compounds (such as alkyl cyanoacetates and malononitrile) gave the corresponding ring‐opened products 2a‐f. Compounds 2a‐d reacted with methanesulfonic acid to give the corresponding α‐alkylidene‐γ‐butyrolactones 3a‐d. On the other hand, treatment of 2e,f with methanesulfonic acid yielded 3‐pyridinecarbonitrile derivatives 4a,b.  相似文献   

14.
Four new curcuminoid analogues, 1,7‐bis(4‐hydroxyphenyl)‐1,6‐heptadiene‐3,5‐dione, 1a ; 1,7‐di(2‐furyl)‐1,6‐heptadiene‐3,5‐dione, 1b ; 1,7‐di(2‐naphthyl)‐1,6‐heptadiene‐3,5‐dione, 1c ; 1,7‐bis(2‐chlorophenyl)‐1,6‐heptadiene‐3,5‐dione, 1d ; and their copper(II) complexes of ML2 stoichiometry were synthesized and characterized by UV, IR, 1H NMR, ESR and mass spectral data. The compounds were investigated for their possible cytotoxic and antitumour activities. It was found that copper chelates are remarkably active compared with free curcuminoid analogues. All the compounds were found to be cytotoxic towards Ehrlich ascites carcinoma cells and cultured L929 (lung fibroblast cells). In the case of culture studies, concentrations needed for 50% cell death were around 5 µg/ml for copper complexes and 10 µg/ml for curcuminoid analogues. Copper complex of 1a with hydroxyl group in the phenyl ring was found to be most active towards L929cells (1 µg/ml produced 43.3 ± 1.3% cell death). Compound 1b , which possesses a furyl ring system, was found to show least activity towards increase in life span of tumour‐bearing mice (increase in life span 39.31%). Copper chelates of all curcuminoid analogues showed a significant reduction (p < 0.001) of solid tumour volume in mice. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
5‐Azido‐2‐methoxy‐1,3‐xylyl‐18‐crown‐5 has been prepared by reacting p‐toluenesulfonyl azide with the carbanion generated from the reaction of 5‐bromo‐2‐methoxy‐1,3‐xylyl‐18‐crown‐5 with n‐butyl lithium. The asymmetric N3 stretch of this product has been observed as a single band at 2110 cm?1 in dichloromethane solution. Addition of solid NaSCN, KSCN and CsSCN shifts this band to 2115, 2113 and 2112 cm?1, respectively. Computational studies of this azide at the B3LYP‐6‐31G* level in the presence and absence of Na+ predicted these bands to be at 2173 cm?1 and 2184 cm?1. For the salt‐containing solutions, additional bands were observed at 2066 cm?1, 2056 cm?1 and 2055 cm?1, respectively, which are in the range expected for CN stretches. The X‐ray structure of this azide has been determined. The terminal and internal N? N bond lengths were found to be 1.127(2) and 1.245(2) Δ, respectively, which is the usual pattern for aromatic azides. The crown ether is looped over the face of the aromatic ring resulting in an angle of 38.94° between the plane defined by the aromatic ring and that defined by the five ring oxygen atoms. In addition, the CH3 group is rotated out of the plane of the phenyl ring with C1‐C18‐O181‐C182 and C17‐C18‐O181‐C182 dihedral angles of 93.81(14)° and ‐90.54(14)°, respectively.  相似文献   

16.
The cyclization mechanism for the title compound ( 2 ) reacting with one‐carbon fragment reagents or nitrous acid to afford heterobicyclic compounds 6‐amino‐3‐substituted‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐ones ( 3a~d ) or 6‐amino‐1,2,3,4‐tetrazolo[5,1‐f][1,2,4]triazin‐8(7H)‐one ( 4 ), respectively, is explored in this paper. When 3‐amino‐2‐benzyl‐6‐hydrazino‐1,2,4‐triazin‐5(2H)‐one ( 10 ), the N‐2 benzylated derivative of 2 , is treated under the same conditions, ring cyclization does not occur; instead, 3‐amino‐2‐benzyl‐6‐substituted‐1,2,4‐triazin‐5(2H)‐ones ( 11,12,14 ) and 2‐N‐(2‐amino‐1‐benzyl‐4‐oxo‐1,2,4‐triazin‐5‐yl)semicarbazide ( 13 ) are formed. Alternatively, when 3‐amino‐6‐hydrazino‐2‐[(2‐hydroxyethoxy)methyl]‐1,2,4‐triazin‐5(2H)‐one ( 16 ), a compound bearing the 2‐[(2‐hydroxyethoxy)methyl] side‐chain at N‐2 of 2 by an N? C? O bond, reacts with glacial acetic acid or nitrous acid, the side‐chain is cleaved through acidolysis to affford the ring‐closed compound 6‐amino‐3‐methyl‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐one ( 3b ) or compound 4 , respectively. From these results, we suggest a cyclization mechanism that the ring cyclization is dependent on the aromatization of the 1,2,4‐triazine ring, which influence the reactivity and reaction behavior of the π‐deficient 1,2,4‐triazine.  相似文献   

17.
A series of monoaza‐15‐crown‐5 ethers (2b‐2h) having 4′‐hydroxy‐3′,5′‐disubstituted benzyl groups have been prepared by the Mannich reaction of 2,6‐disubstituted phenols with the corresponding N‐methoxymethylmonoaza‐crown ethers. Competitive transport through a chloroform membrane by 12‐crown‐4 derivatives (lithium, potassium and cesium) and 15‐crown‐5 derivatives (sodium, potassium and cesium) were measured under basic‐source phase and acidic‐receiving phase conditions. All ligands transported size‐matched alkali‐metal cations. Ligands 1h and 2h with two fluorine atoms in the side arm gave higher metal ion transport rates than those of dimethyl‐ (1a and 2a), diisopropyl‐ (1b and 2b), and butylmethyl‐ (1d and 2d) derivatives. X‐ray crystal structures of six alkali metal complexes with monoaza‐12‐crown‐4‐derivatives ( 1b‐LiSCN, 1b‐KSCN, 1c‐NaSCN, 1d‐LiSCN, 1f‐RbSCN and 1h‐LiSCN ) and three alkali metal complexes with 15‐crown‐5 derivatives ( 2b‐KSCN, 2c‐KSCN , and 2e‐KSCN ) along with crystal structures of some new ligands (1b, 1c, 1d, 1f, and 2c) are also reported. These X‐ray analyses indicate that the crystal structures of the alkali metal ion complexes of these new armed‐crown ethers changed depending on the substituents at the 3′‐ and 5′‐positions of the appended hydroxybenzyl arms.  相似文献   

18.
Herein, a coumaraz‐2‐on‐4‐ylidene ( 1 ) as a new example of an ambiphilic N‐heterocyclic carbene, having electronic properties that can be fine‐tuned, is reported. The N‐carbamic and aryl groups on the carbene carbon center provide exceptionally high electrophilicity and nucleophilicity simultaneously to the carbene center, as evidenced by the 77Se NMR chemical shifts of their selenoketone derivatives and the CO stretching strengths of their rhodium carbonyl complexes. Since the precursors of 1 could be synthesized from various functionalized Schiff bases in a practical and scalable manner, the electronic properties of 1 can be fine‐tuned in a quantitative and predictable way by using the Hammett σ constant of the functional groups on aryl ring. The facile electronic tuning capability of 1 may be applicable to eliciting novel properties in main‐group and transition‐metal chemistry.  相似文献   

19.
Densely substituted hydroquinoid phenanthrene ( 10 – 18 ), acephenanthrene ( 19 ), and triphenylene chromium tricarbonyl complexes ( 20 – 22 ) have been prepared via benzannulation of naphthalenyl ( 1 – 7 ), acenaphthenyl ( 8 ) and phenanthrenyl carbene complexes ( 9 ), respectively. The naphthalenyl, acenaphthenyl and phenanthrenyl carbene complexes 1 – 9 were obtained in 52–88 % yield starting from commercially available bromoarenes by dehalolithiation, addition of hexacarbonyl chromium to the lithioarene and O‐alkylation of the resulting acyl chromates with trimethyloxonium tetrafluoroborate (Fischer route). The benzannulation of the aryl carbene complexes (either with 3‐hexyne / (t‐butyl)dimethylsilyl chloride or with (t‐butyl)dimethylsilylethyne) allowed the regiospecific synthesis of the oligocyclic hydroquinoid arene tricarbonyl chromium complexes 10 – 22 in 44–94 % yield thus providing a two‐step synthesis with overall yields of 18 ‐ 80 %. Under the kinetic reaction conditions used the metal atom is exclusively coordinated to the persubstituted terminal hydroquinoid ring. The molecular structures of phenanthrene complexes 10 , 12 – 14 , and 16 , acephenanthrene complex 19 , and triphenylene complexes 20 and 21 in the solid state have been determined by X‐ray crystallography. The carbonyl ligands either adopt an eclipsed ( 10 , 12 , 14 , 16 , 19 , 20 ) or staggered ( 13 , 21 ) exo‐conformation pointing away from the center of the phenanthrene, acephenanthrene and triphenylene ligands, respectively. The coordination of the metal atom to the hydroquinoid ring is unsymmetric with the largest metal‐carbon distances found between the chromium atom and one bridgehead carbon and the ring carbon atom bearing the bulky (t‐butyl)dimethylsilyloxy (TBDMSO) substituent.  相似文献   

20.
The reactions of phosphorochloridites 5a–c with an equimolar amount of 1,2‐thiazetidine 1,1‐dioxide (2) or L(−)‐3‐carboethoxy‐1,2‐thiazetidine 1,1‐dioxide (7) in the presence of triethylamine, affords the N‐phosphitylated β‐sultams 6a–b and L(−)‐8a,c. Their oxidation by addition of oxygen, sulfur, or selenium results in formation of stable organophosphorus β‐sultams 10a–b, L(−)‐11a,c, 12a, 13a, L(−)‐14c, and L(−)‐15c. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 61–67, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号