首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐temperature chlorination of C100 fullerene followed by X‐ray structure determination of the chloro derivatives enabled the identification of three isomers of C100 from the fullerene soot, specifically numbers 18, 425, and 417, which obey the isolated pentagon rule (IPR). Among them, isomers C1‐C100(425) and C2‐C100(18) afforded C1‐C100(425)Cl22 and C2‐C100(18)Cl28/30 compounds, respectively, which retain their IPR cage connectivities. In contrast, isomer C2v‐C100(417) gives Cs‐C100(417)Cl28 which undergoes a skeletal transformation by the loss of a C2 fragment, resulting in the formation of a nonclassical (NC) C1‐C98(NC)Cl26 with a heptagon in the carbon cage. Most probably, two nonclassical C1‐C100(NC)Cl18/22 chloro derivatives originate from the IPR isomer C1‐C100(382), although both C1‐C100(344) and even nonclassical C1‐C100(NC) can be also considered as the starting isomers.  相似文献   

2.
Chlorination of the C100(18) fullerene with a mixture of VCl4 and SbCl5 gives rise to branched skeletal transformations affording non‐classical (NC) C94(NC1)Cl22 with one heptagon in the carbon cage together with the previously reported C96(NC3)Cl20 with three heptagons. The three‐step pathway to C94(NC1)Cl22 starts with two successive C2 losses of 5:6 C?C bonds to give two cage heptagons, whereas the third C2 loss of the 5:5 C?C bond from a pentalene fragment eliminates one of the heptagons. Quantum‐chemical calculations demonstrate that the two unusual skeletal transformations—creation of a heptagon in C96(NC3)Cl20 through a Stone–Wales rearrangement and the presently reported elimination of a heptagon through C2 loss—are both characterized by relatively low activation energy.  相似文献   

3.
High‐temperature chlorination of pristine C98 fullerene isomers separated by HPLC from the fullerene soot afforded crystals of C98Cl22 and C98Cl20. An X‐ray structure elucidation revealed, respectively, the presence of carbon cages of the most stable C2‐C98(248) and rather unstable C1‐C98(116), which represent the first isolated pentagon rule (IPR) isomers of fullerene C98 confirmed experimentally. The chlorination patterns of the chlorides are discussed in terms of the formation of isolated C=C bonds and aromatic substructures on the fullerene cages.  相似文献   

4.
《化学:亚洲杂志》2017,12(18):2379-2382
Cage transformations in fullerenes are rare phenomena which are still not fully understood. We report the first skeletal transformation of an Isolated‐Pentagon‐Rule (IPR) isomer of C78 fullerene upon high‐temperature chlorination which proceeds by six‐step Stone–Wales rearrangements affording non‐IPR, non‐classical (NC ) C78(NC 2)Cl24 with two cage heptagons, six pairs of fused pentagons, and an unprecedented loop‐like chlorination pattern. The following loss of a C2 unit results in C76(NC 3)Cl24 containing three cage heptagons.  相似文献   

5.
High‐temperature trifluoromethylation of isolated‐pentagon‐rule (IPR) fullerene C92 chlorination products followed by HPLC separation of C92(CF3)n derivatives resulted in the isolation and X‐ray structural characterization of IPR C92(38)(CF3)18 and non‐classical C92(NC)(CF3)22. The formation of C92(38)(CF3)18 as the highest CF3 derivative of the known isomer C92(38) can be expected. The formation of C92(NC)(CF3)22 was interpreted as chlorination‐promoted cage transformation of C92(38) followed by trifluoromethylation of non‐classical C92(NC) chloride. Noticeably, C92(NC)(CF3)22 shows the highest degree of trifluoromethylation among all known CF3 derivatives of fullerenes. The addition patterns of C92(38)(CF3)18 and C92(NC)(CF3)22 are discussed and compared to the chlorination patterns of C92(38)Cln compounds.  相似文献   

6.
Chlorination of various HPLC fractions of C96 with a mixture of VCl4 and SbCl5 at 340–360 °C and single‐crystal X‐ray diffraction study of the products led to the identification of three new IPR isomers of C96. The C96(175) isomer forms a stable chloride, C96(175)Cl20, while chlorides of two other new isomers, C96(114) and C96(80), undergo cage shrinkage yielding C94(NC1)Cl28 and C96(NC2)Cl32 with non‐classical (NC) cages. These two NC chlorides contain, respectively, one and two heptagons flanked by pairs of fused pentagons and are stabilized by chlorine attachment to the emerging pentagon–pentagon junctions. Thus, the number of the experimentally confirmed C96 isomers has reached nine, which corroborates the empirical rule that the C6n fullerenes exhibit particularly rich isomerism.  相似文献   

7.
Chlorination of C100 fullerene with a mixture of VCl4 and SbCl5 afforded C96Cl20 with a strongly unconventional structure. In contrast to the classical fullerenes containing only hexagonal and pentagonal rings, the C96 cage contains three heptagonal rings and, therefore, should be classified as a fullerene with a nonclassical cage (NCC). There are several types of pentagon fusions in the C96 cage including pentagon pairs and pentagon triples. The three‐step pathway from isolated‐pentagon‐rule (IPR) C100 to C96(NCC‐3hp) includes two C2 losses, which create two cage heptagons, and one Stone–Wales rotation under formation of the third heptagon. Structural reconstruction established C100 isomer no. 18 from 450 topologically possible IPR isomers as the starting C100 fullerene. Until now, no pristine C100 isomers have been confirmed based on the experimental results.  相似文献   

8.
Isolation and characterization of very large fullerenes is hampered by a drastic decrease of their content in fullerene soot with increasing fullerene size and a simultaneous increase of the number of possible IPR (Isolated Pentagon Rule) isomers. In the present work, fractions containing mixtures of C102 and C104 were isolated in very small quantities (several dozens of micrograms) by multi‐step recycling HPLC from an arc‐discharge fullerene soot. Two such fractions were used for chlorination with a VCl4/SbCl5 mixture in glass ampoules at 350–360 °C. The resulting chlorides were investigated by single‐crystal X‐ray diffraction using synchrotron radiation. By this means, two IPR isomers of C104, numbers 258 and 812 (of 823 topologically possible isomers), have been confirmed for the first time as chlorides, C1‐C104(258)Cl16 and D2‐C104(812)Cl24, respectively, while an admixture of C2‐C104(811)Cl24 was assumed to be present in the latter chloride. DFT calculations showed that pristine C104(812) belongs to rather stable C104 cages, whereas C104(258) is much less stable.  相似文献   

9.
High‐temperature chlorination of three IPR isomers of fullerene C88, C2‐C88(7), Cs‐C88(17), and C2‐C88(33), resulted in the isolation and X‐ray structural characterization of C88(7)Cl12, C88(7)Cl24, C88(17)Cl22, and C88(33)Cl12/14. Chlorination patterns of C88(7) and C88(33) isomers are unusual in that one or more pentagons remain free from chlorination while some other pentagons are occupied by two or three Cl atoms. The addition patterns of the isolated chlorides are discussed in terms of the distribution of twelve pentagons on the carbon cages and the formation of stabilizing isolated C=C bonds and benzenoid rings.  相似文献   

10.
The most‐stable #916C56 carbon cage has been captured by in situ chlorination during the radio frequency furnace process. The resulting exohedral #916C56Cl12 was separated and unambiguously characterized by single crystal X‐ray structure determination. The discovery of #916C56 provides evidence for a thermodynamically controlled mechanism of fullerene formation, and on the other hand shows that the in situ chlorination does not remarkably influence the fullerene formation itself but just results in the capture of preformed cages. A detailed analysis of the chlorination pattern of #916C56Cl12 reveals the main factors controlling the reactivity of non‐IPR fullerenes. A high degree of aromatization was observed in the remaining π‐system by considering geometric criteria and nucleus‐independent chemical‐shift analysis (NICS). Along with the well‐known stabilization of pentagon pentagon junctions during chlorination, the formation of aromatic islands plays an important role in the stabilization of the fullerene cage and also in the determination of the chlorination pattern. Based on these empirical rules, the preferable addition patterns for non‐IPR fullerene cages can be easily predicted.  相似文献   

11.
Chlorination of a mixture of C86 isomers no. 16 (Cs) and no. 17 (C2) with VCl4 or a (TiCl4+Br2) mixture afforded crystalline chlorides with 16 to 22 Cl atoms per fullerene cage. Single crystal X‐ray diffraction with the use of synchrotron radiation enabled us to determine the chlorination patterns of C86(16)Cl16, C86(17)Cl18, C86(17)Cl20, and C86(17)Cl22. At these degrees of chlorination, addition patterns of C86(16) and C86(17) chlorides have some features in common, owing to the close similarity in the cage structures of both isomers. The average energy of C?Cl bonds decreases with increasing number of attached Cl atoms.  相似文献   

12.
The chlorination of HPLC fractions with pristine giant fullerenes, C102 and C104, followed by X‐ray crystallographic study of chlorides, C102(603)Cl18/20 and C104(234)Cl16–22, confirmed the presence of the most stable IPR (IPR=Isolated Pentagon Rule) isomers, C102(603) and C104(234), in the fullerene soot. The discussion concerns the chlorination patterns of polychlorides and relative stability of pristine isomers of C102 and C104 fullerenes.  相似文献   

13.
High‐temperature chlorination of C90‐containing fullerene fraction resulted in the isolation and X‐ray structural characterization of C90(1)Cl10/12, the first derivatives of a relatively unstable isomer D5h‐C90(1) with a nanotubular shape. In the crystal structure, three isomers of both C90(1)Cl10 and C90(1)Cl12 with similar chlorination patterns co‐crystallize in the same crystallographic site. Thus, in contrast to the previous reports, D5h‐C90(1) is present, though with a low abundance, in the fullerene soot produced by arc‐discharge method with undoped graphite rods.  相似文献   

14.
High‐temperature chlorination of a fullerene C86 with VCl4 afforded non‐classical C84Cl30 and C82Cl30 containing one and two heptagons, respectively, in the carbon cages. Two types of C2 losses, which differ in the final arrangements of separate or fused pentagons, can occur successively in either order, producing rather flat or concave regions on the shrinked carbon cage. In the chlorination‐promoted skeletal transformation of C86 (isomer no. 16) with the loss(es) of C2 units, the structures of the starting, intermediate, and final compounds were all revealed unambiguously by X‐ray single crystal diffraction.  相似文献   

15.
《化学:亚洲杂志》2017,12(3):298-301
High‐temperature chlorination of HPLC fullerene fractions containing mainly C92/C94 and C102/C104 resulted in the isolation and X‐ray structural characterization of chloro derivatives of azafullerenes, C59NCl5 and C97NCl21. It was assumed that formation of azafullerenes in the arc‐discharge synthesis of fullerenes occurred due to air leakage into the reactor. The molecule of C59NCl5 contains an isolated aromatic pyrrole ring on the fullerene cage and possesses C 5v symmetrical shape typical of other known C59NR5 derivatives. The molecule of non‐classical (NC ) C97N(NC )Cl21 contains an NC6 heptagon on the azafullerene cage that assumes its formation by a C2 loss from C99N in the course of chlorination. The chlorination pattern is characterized by the presence of stabilizing isolated aromatic systems and isolated double C=C bonds on the C97N(NC ) azafullerene cage.  相似文献   

16.
Although all the pure‐carbon fullerene isomers above C60 reported to date comply with the isolated pentagon rule (IPR), non‐IPR structures, which are expected to have different properties from those of IPR species, are obtainable either by exohedral modification or by endohedral atom doping. This report describes the isolation and characterization of a new endohedral metallofullerene (EMF), La2@C76, which has a non‐IPR fullerene cage. The X‐ray crystallographic result for the La2@C76/[NiII(OEP)] (OEP=octaethylporphyrin) cocrystal unambiguously elucidated the Cs(17 490)‐C76 cage structure, which contains two adjacent pentagon pairs. Surprisingly, multiple metal sites were distinguished from the X‐ray data, which implies dynamic behavior for the two La3+ cations inside the cage. This dynamic behavior was also corroborated by variable‐temperature 139 La NMR spectroscopy. This phenomenon conflicts with the widely accepted idea that the metal cations in non‐IPR EMFs invariably coordinate strongly with the negatively charged fused‐pentagon carbons, thereby providing new insights into modern coordination chemistry. Furthermore, our electrochemical and computational studies reveal that La2@Cs(17 490)‐C76 has a larger HOMO–LUMO gap than other dilanthanum‐EMFs with IPR cage structures, such as La2@D3h(5)‐C78 and La2@Ih(7)‐C80, which implies that IPR is no longer a strict rule for EMFs.  相似文献   

17.
The synthesis and single‐crystal X‐ray structural characterization of the first endohedral metallofullerene to contain a heptagon in the carbon cage are reported. The carbon framework surrounding the planar LaSc2N unit in LaSc2N@Cs(hept)‐C80 consists of one heptagon, 13 pentagons, and 28 hexagons. This cage is related to the most abundant Ih‐C80 isomer by one Stone–Wales‐like, heptagon/pentagon to hexagon/hexagon realignment. DFT computations predict that LaSc2N@Cs(hept)‐C80 is more stable than LaSc2N@D5hC80, and suggests that the low yield of the heptagon‐containing endohedral fullerene may be caused by kinetic factors.  相似文献   

18.
Secondary aliphatic amines add to a pole pentagon of [70]fullerene in the presence of N‐fluorobenzenesulfonimide to form cyclopentadienyl‐type adducts, C70(NSO2Ph)(NR1R2)4 ( 1 ), which can be converted into analogous C70 derivatives such as C70(NHSO2Ph)(NHTol)5 ( 2 ). Further addition reactions of either 1 or 2 take place selectively at the opposite pole pentagon of the C70 cage, thus forming curved π systems with a reduced number of π electrons, and the products include a dodecakis‐adduct with a Vögtle belt motif.  相似文献   

19.
Like C60, C70 is one of the most representative fullerenes in fullerene science. Even though there are 8149 C70 isomers, only two of them have been found before: the conventional D5h and an isolated pentagon rule (IPR)‐violating C2v(7854). Through the use of quantum chemical methods, we report a new unconventional C70 isomer, C2(7892), which survives in the form of dimetallic sulfide endohedral fullerene Sc2S@C70. Compared with the IPR‐obeying C70 and the C2v(7854) fullerene with three pairs of pentagon adjacencies, the C2(7892) cage violates the isolated pentagon rule and has two pairs of pentagon adjacencies. In Sc2S@C2(7892)‐C70, two scandium atoms coordinate with two pentalene motifs, respectively, presenting two equivalent Sc? S bonds. The strong coordination interaction, along with the electron transfer from the Sc2S cluster to the fullerene cage, results in the stabilization of the non‐IPR endohedral fullerene. The electronic structure of Sc2S@C70 can be formally described as [Sc2S]4+@[C70]4?; however, a substantial overlap between the metallic orbitals and cage orbitals has also been found. Electrochemical properties and electronic absorption, infrared, and 13C NMR spectra of Sc2S@C70 have been calculated theoretically.  相似文献   

20.
The crystal structure of the title compound {(C5H14N2)2[Cd2Cl8]}n, (I), consists of hydrogen‐bonded 2‐methylpiperazinediium (H2MPPA2+) cations in the presence of one‐dimensional polymeric {[CdCl33‐Cl)]2−}n anions. The CdII centres are hexacoordinated by three terminal chlorides and three bridging chlorides and have a slightly distorted octahedral CdCl33‐Cl)3 arrangement. The alternating CdCl6 octahedra form four‐membered Cd2Cl2 rings by the sharing of neighbouring Cd–Cl edges to give rise to extended one‐dimensional ladder‐like chains parallel to the b axis, with a Cd...Cd distance of 4.094 (2) Å and a Cd...Cd...Cd angle of 91.264 (8)°. The H2MPPA2+ cations crosslink the [CdCl33‐Cl)]n chains by the formation of two N—H...Cl hydrogen bonds to each chain, giving rise to one‐dimensional ladder‐like H2MPPA2+–Cl2 hydrogen‐bonded chains [graph set R42(14)]. The [CdCl33‐Cl)]n chains are interwoven with the H2MPPA2+–Cl2 hydrogen‐bonded chains, giving rise to a three‐dimensional supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号