首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and Analytical Characterization of Functionalized β‐Hydroxydithiocinnamic Acids and their Esters. Complex Chemistry towards Nickel(II), Palladium(II), and Platin(II) Starting from silyl‐protected 4‐hydroxy acetophenone ( 1 ) the 1,1‐ethenedihiolato complexes 3 – 5 were synthesised using carbon disulfide and potassium‐tert‐butylate as a base. After being deprotected, the resulting 4‐hydroxy‐substituted complexes 6 – 8 were esterified with DL‐α‐lipoic acid to obtain the compounds 9 – 11 . The resulting complexes were characterized using NMR spectroscopy, mass spectrometry and IR spectroscopy. 3‐substituted β‐hydroxydithiocinnamic acid methyl ester ( 12 ) was obtained via an analogous path of reaction using silyl‐protected 3‐hydroxy acetophenone ( 2 ), carbon disulfide and methyl iodide. After removing of the silyl group the resulting hydroxy group was esterified with DL‐α‐lipoic acid. Using the dithioacid ester 14 as a ligand the NiII ( 15 ), PdII ( 16 ) and PtII ( 17 ) [O,S] complexes were obtained.  相似文献   

2.
The competition between π‐ and dual σ,π‐gold‐activation modes is revealed in the gold(I)‐catalyzed heterocyclization of 1‐(o‐ethynylaryl)urea. A noticeable effect of various ligands in gold complexes on the choice of these activation modes is described. The cationic [Au(IPr)]+ (IPr=2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidene) complex cleanly promotes the π activation of terminal alkynes, whereas [Au(PtBu3)]+ favors intermediate σ,π species. In this experimental and mechanistic study, which includes kinetic and cross‐over experiments, several σ‐gold, σ,π‐gold, and other gold polynuclear reaction intermediates have been isolated and identified by NMR spectroscopy, X‐ray diffraction, or MALDI spectrometry. The ligand control in the simultaneous or alternative π‐ and σ,π‐activation modes is also supported by deuterium‐labeling experiments.  相似文献   

3.
Kinetically protected 2‐silyl‐1,3‐diphosphapropenes that bear both sp2‐ and sp3‐type phosphorus atoms were employed in the preparation of gold complexes. The structural properties of the 1,3‐diphosphapropene digold(I) complexes were characterized by spectroscopic and crystallographic analyses, which revealed unique aurophilic interactions and conformational properties of the ligand. The 2‐silyl‐1,3‐diphosphapropene‐bis(chlorogold) complexes catalyzed cycloisomerization reactions of 1,6‐enyne derivatives even in the absence of silver co‐catalyst, and were able to be recovered after the reaction. The catalytic activity of the digold complexes primarily depended on the sp2‐type phosphorus atom and the silyl group, and could be tuned by the sp3‐phosphino group. Additionally, results on the catalytic activity of the digold complex in the presence and absence of silver salts showed considerable differences.  相似文献   

4.
Oxidative addition plays a major role in transition‐metal catalysis, but this elementary step remains very elusive in gold chemistry. It is now revealed that in the presence of GaCl3, phosphine gold chlorides promote the oxidative addition of disilanes at low temperature. The ensuing bis(silyl) gold(III) complexes were characterized by quantitative 31P and 29Si NMR spectroscopy. Their structures (distorted Y shape) and the reaction profile of σ(Si Si) bond activation were analyzed by DFT calculations. These results provide evidence for the intermolecular oxidative addition of σ(Si Si) bonds to gold and open promising perspectives for the development of new gold‐catalyzed redox transformations.  相似文献   

5.
A general scheme for the endo‐ and exo‐cyclization of furan reactivity with [L ‐AuIII, IClx] with (x = 3, 1 and L ‐acetylene and vinylidene) complexes is investigated using density functional theory (DFT) code. Two conceivable mechanisms via a [4 + 2] Diels–Alder process or carbene complex are analyzed. According to the activation energy values of the gold (III and I) catalyst, the first mechanism, which implies the Diels–Alder reaction of AuIII, is thermodynamically favored and gives more evidence of the intramolecular addition of the furan with the alkynes. The second mechanism, presumably assisted by the spontaneous formation of the exo‐vinylidene complexes and intermediates of gold (III, I) by forming the carbene complex, is kinetically favored. Additionally, we compare our results with other structures with intramolecular additions that exhibit the quasi‐similarity of gold analogue structures. Differences in activation energies are observed, according to the functional used. Finally, we probe the solvent effects, which decrease the energy barrier in the path. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

6.
Gold(I) complexes of 1‐[1‐(2,6‐dimethylphenylimino)alkyl]‐3‐(mesityl)imidazol‐2‐ylidene (C^ImineR), 1,3‐dimesitylimidazol‐2‐ylidene (IMes) and of the corresponding thione derivatives (S^ImineR and IMesS) were prepared and structurally characterised. The solid‐state structure of the C^ImineR and S^ImineR gold(I) complexes showed monodentate coordination of the ligand and a dangling imine group that could bind reversibly to the metal centre to stabilise otherwise unstable catalytic intermediates. Interestingly, reaction of C^IminetBu with [AuCl(SMe2)] led to the formation of [(C^IminetBu)AuCl], which rearranges upon crystallisation into the unusual complex cation [(C^IminetBu)2Au]+, with AuCl2? as the counterion. The activity of the gold complexes in the hydroamination of phenylacetylene with substituted anilines was tested and compared to control catalyst systems. The best catalytic performance was obtained with [(C^IminetBu)AuCl], with the exclusive formation of the Markovnikov addition product in excellent yield (>95 %) regardless of the substituents on aniline.  相似文献   

7.
Gold–carbene complexes are essential intermediates in many gold‐catalyzed organic‐synthetic transformations. While gold–carbene complexes with direct, vinylogous, or phenylogous heteroatom substitution have been synthesized and characterized, the observation in the condensed phase of electronically non‐stabilized gold–carbenes has so far remained elusive. The sterically extremely shielded, emerald‐green complex [IPr**Au=CMes2]+[NTf2]? has now been synthesized, isolated, and fully characterized. Its absorption maximum at 642 nm, in contrast to 528 nm of the red‐purple carbocation [Mes2CH]+, clearly demonstrates that gold is more than just a “soft proton”.  相似文献   

8.
A family of seven cationic gold complexes that contain both an alkyl substituted π‐allene ligand and an electron‐rich, sterically hindered supporting ligand was isolated in >90 % yield and characterized by spectroscopy and, in three cases, by X‐ray crystallography. Solution‐phase and solid‐state analysis of these complexes established preferential binding of gold to the less substituted C?C bond of the allene and to the allene π face trans to the substituent on the uncomplexed allenyl C?C bond. Kinetic analysis of intermolecular allene exchange established two‐term rate laws of the form rate=k1[complex]+k2[complex][allene] consistent with allene‐independent and allene‐dependent exchange pathways with energy barriers of ΔG1=17.4–18.8 and ΔG2=15.2–17.6 kcal mol?1, respectively. Variable temperature (VT) NMR analysis revealed fluxional behavior consistent with facile (ΔG=8.9–11.4 kcal mol?1) intramolecular exchange of the allene π faces through η1‐allene transition states and/or intermediates that retain a staggered arrangement of the allene substituents. VT NMR/spin saturation transfer analysis of [{P(tBu)2o‐binaphthyl}Au(η2‐4,5‐nonadiene) ]+SbF6? ( 5 ), which contains elements of chirality in both the phosphine and allene ligands, revealed no epimerization of the allene ligand below the threshold for intermolecular allene exchange (ΔG298K=17.4 kcal mol?1), which ruled out the participation of a η1‐allylic cation species in the low‐energy π‐face exchange process for this complex.  相似文献   

9.
The electronic structure and the spectroscopic properties of [Au2(CS3)2]?2, [Au2(pym‐2‐S)2] (pym = pyrimidethiolate), [Au2(dpm)2]+2 (dpm = bis(diphosphino)methane) were studied using density functional theory (DFT) at the B3LYP level. The absorption spectrum of these binuclear gold(I) complexes was calculated by single excitation time‐dependent (TD) method. All complexes showed a 1(5dσ* → 6pσ) transition associated with a metal–metal charge transfer, which is strongly interrelated with the gold–gold distance. Furthermore, we have calculated the frequency of the gold–gold vibration (νAu2) on the above complexes. The values obtained are theoretically in agreement with experimental range. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

10.
Recently, the development of more sustainable catalytic systems based on abundant first‐row metals, especially nickel, for cross‐coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a NiIII–alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon–carbon cross‐coupling system based on a two‐coordinate NiII–bis(amido) complex in which a NiIII–alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this NiIII–alkyl species as well as those of other key NiI and NiII intermediates. The catalytic cycle described herein is also one of the first examples of a two‐coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first‐row transition metals to accommodate two‐coordinate complexes.  相似文献   

11.
Asymmetric reactions involving (E)‐3‐aryl‐1‐(pyridin‐2‐yl‐N‐oxide)prop‐2‐en‐1‐ones and cyclic enol silyl ethers show good yields and excellent enantioselectivities (up to 99.9 % ee) when catalysed by bis(oxazoline)–CuII complexes. Different reaction pathways can be followed by different enol silyl ethers: with 2‐(trimethylsilyloxy)furan, a Mukaiyama–Michael adduct is obtained, whereas a hetero Diels–Alder cycloadduct was formed by using (1,2‐dihydronaphthalen‐4‐yloxy)trimethylsilane. In the latter reaction, the absolute configuration of the product is consistent with a reagent approach to the less hindered Re face of the coordinated substrate in the reactive complex.  相似文献   

12.
Palladium complexes incorporating chiral N‐heterocyclic carbene (NHC) ligands catalyze the asymmetric intramolecular α‐arylation of amides producing 3,3‐disubstituted oxindoles. Comprehensive DFT studies have been performed to gain insight into the mechanism of this transformation. Oxidative addition is shown to be rate‐determining and reductive elimination to be enantioselectivity‐determining. The synthesis of seven new NHC ligands is detailed and their performance is compared. One of them, L8 , containing a tBu and a 1‐naphthyl group at the stereogenic centre, proved superior and was very efficient in the asymmetric synthesis of fifteen new spiro‐oxindoles and three azaspiro‐oxindoles often in high yields (up to 99 %) and enantioselectivities (up to 97 % ee; ee=enantiomeric excess). Three palladacycle intermediates resulting from the oxidative addition of [Pd(NHC)] into the aryl halide bond were isolated and structurally characterized (X‐ray). Using these intermediates as catalysts showed alkene additives to play an important role in increasing turnover number and frequency.  相似文献   

13.
The syntheses of the novel acyclic nucleosides 5a – 5m , carrying different N‐[(benzyloxy)(aryl)methyl] substituents, are described (Scheme). These compounds could be prepared in medium‐to‐good yields by either direct or silyl‐assisted coupling of the electrophiles 6 with either purine or pyrimidine nucleobases, or with different imidazole derivatives. The reactivity of the positively charged electrophilic intermediates derived from 6 upon Cl? abstraction was rationalized by ab initio HF/6‐311G quantum‐mechanic calculations. The positive charge was found to be dispersed differently, depending on the electronic properties of the aryl substituents.  相似文献   

14.
Stereoselective preparation of a variety of synthetically useful functionalized bicyclo[5.3.0]decane derivatives was achieved by tandem cyclization of 3‐siloxy‐1,3,9‐triene‐7‐yne derivatives based on the electrophilic activation of alkynes catalyzed by [W(CO)5(L)]. The reaction proceeded smoothly under photoirradiation, and various substrates were cyclized to give the corresponding bicyclic compounds with up to four chiral centers stereospecifically. Reactions of siloxydienes with a silyl substituent as an equivalent of a hydroxyl group also proceeded with wide generality to afford silyl‐substituted bicyclo[5.3.0]decanes, which were highly useful as synthetic intermediates. Stereochemical studies concerning the silyl enol ether moiety suggested that two types of reaction pathway for the formation of seven‐membered rings were present. The reaction of (Z)‐enol silyl ethers proceeded through Cope rearrangement of cis‐divinylcyclopropane intermediates, and that of (E)‐enol silyl ethers by 1,4‐addition of the dienyl tungsten species at the position δ to the metal atom. In the reactions of siloxydiene derivatives with silyl substituents, all possible diastereomers could be synthesized stereoselectively by changing the geometry of the silyl enol ether and enyne moieties.  相似文献   

15.
The gas‐phase bond‐dissociation energies of a SO2–imidazolylidene leaving group of three gold(I) benzyl imidazolium sulfone complexes are reported (E0=46.6±1.7, 49.6±1.7, and 48.9±2.1 kcal mol?1). Although these energies are similar to each other, they are reproducibly distinguishable. The energy‐resolved collision‐induced dissociation experiments of the three [L]–gold(I) (L=ligand) carbene precursor complexes were performed by using a modified tandem mass spectrometer. The measurements quantitatively describe the structural and electronic effects a p‐methoxy substituent on the benzyl fragment, and trans [NHC] and [P] gold ligands, have towards gold carbene formation. Evidence for the formation of the electrophilic gold carbene in solution was obtained through the stoichiometric and catalytic cyclopropanation of olefins under thermal conditions. The observed cyclopropane yields are dependent on the rate of gold carbene formation, which in turn is influenced by the ligand and substituent. The donation of electron density to the carbene carbon by the p‐methoxy benzyl substituent and [NHC] ligand stabilizes the gold carbene intermediate and lowers the dissociation barrier. Through the careful comparison of gas‐phase and solution chemistry, the results suggest that even gas‐phase leaving‐group bond‐dissociation energy differences of 2–3 kcal mol?1 enormously affect the rate of gold carbene formation in solution, especially when there are competing reactions. The thermal decay of the gold carbene precursor complex was observed to follow first‐order kinetics, whereas cyclopropanation was found to follow pseudo‐first‐order kinetics. Density‐functional‐theory calculations at the M06‐L and BP86‐D3 levels of theory were used to confirm the observed gas‐phase reactivity and model the measured bond‐dissociation energies.  相似文献   

16.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

17.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

18.
Oxidative addition plays a major role in transition‐metal catalysis, but this elementary step remains very elusive in gold chemistry. It is now revealed that in the presence of GaCl3, phosphine gold chlorides promote the oxidative addition of disilanes at low temperature. The ensuing bis(silyl) gold(III) complexes were characterized by quantitative 31P and 29Si NMR spectroscopy. Their structures (distorted Y shape) and the reaction profile of σ(Si? Si) bond activation were analyzed by DFT calculations. These results provide evidence for the intermolecular oxidative addition of σ(Si? Si) bonds to gold and open promising perspectives for the development of new gold‐catalyzed redox transformations.  相似文献   

19.
The mechanism of the [(Cp*MCl2)2] (M=Rh, Ir)‐catalyzed oxidative annulation reaction of isoquinolones with alkynes was investigated in detail. In the first acetate‐assisted C? H‐activation process (cyclometalated step) and the subsequent mono‐alkyne insertion into the M? C bonds of the cyclometalated compounds, both Rh and Ir complexes participated well. However, the desired final products, dibenzo[a,g]quinolizin‐8‐one derivatives, were only formed in high yield when the Rh species participated in the final oxidative coupling of the C? N bond. Moreover, a RhI sandwich intermediate was isolated during this transformation. The iridium complexes were found to be inactive in the oxidative coupling processes. All of the relevant intermediates were fully characterized and determined by single‐crystal X‐ray diffraction analysis. Based on this mechanistic study, a RhIII→RhI→RhIII catalytic cycle was proposed for this reaction.  相似文献   

20.
This Concept article provides an elementary discussion of a special class of large‐sized gold compounds, so‐called Au nanoclusters, which lies in between traditional organogold compounds (e.g., few‐atom complexes, <1 nm) and face‐centered cubic (fcc) crystalline Au nanoparticles (typically >2 nm). The discussion is focused on the relationship between them, including the evolution from the Au???Au aurophilic interaction in AuI complexes to the direct Au? Au bond in clusters, and the structural transformation from the fcc structure in nanocrystals to non‐fcc structures in nanoclusters. Thiolate‐protected Aun(SR)m nanoclusters are used as a paradigm system. Research on such nanoclusters has achieved considerable advances in recent years and is expected to flourish in the near future, which will bring about exciting progress in both fundamental scientific research and technological applications of nanoclusters of gold and other metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号