首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies involving transition‐metal dichalcogenides (TMDs) have been around for many decades and in recent years, many were focused on using TMDs to synthesize inorganic analogues of carbon nanotubes, fullerene, as well as graphene and its derivatives with the ultimate aim of employing these materials into consumer products. In view of this rising trend, we investigated the cytotoxicity of three common exfoliated TMDs (exTMDs), namely MoS2, WS2, and WSe2, and compared their toxicological effects with graphene oxides and halogenated graphenes to find out whether these inorganic analogues of graphenes and derivatives would show improved biocompatibility. Based on the cell viability assessments using methylthiazolyldiphenyl‐tetrazolium bromide (MTT) and water‐soluble tetrazolium salt (WST‐8) assays on human lung carcinoma epithelial cells (A549) following a 24 h exposure to varying concentrations of the three exTMDs, it was concluded that MoS2 and WS2 nanosheets induced very low cytotoxicity to A549 cells, even at high concentrations. On the other hand, WSe2 exhibited dose‐dependent toxicological effects on A549 cells, reducing cell viability to 31.8 % at the maximum concentration of 400 μg mL?1; the higher cytotoxicity displayed by WSe2 might be linked to the identity of the chalcogen. In comparison with graphene oxides and halogenated graphenes, MoS2 and WS2 were much less hazardous, whereas WSe2 showed similar degree of cytotoxicity. Future in‐depth studies should be built upon this first work on the in vitro cytotoxicity of MoS2 and WS2 to ensure that they do not pose acute toxicity. Lastly, nanomaterial‐induced interference control experiments revealed that exTMDs were capable of reacting with MTT assay viability markers in the absence of cells, but not with WST‐8 assay. This suggests that the MTT assay is not suitable for measuring the cytotoxicity of exTMDs because inflated results will be obtained, giving false impressions that the materials are less toxic.  相似文献   

2.
Graphene, a class of two‐dimensional carbon nanomaterial, has attracted extensive interest in recent years, with a significant amount of research focusing on graphene oxides (GOs). They have been primed as potential candidates for biomedical applications such as cell labeling and drug delivery, thus the toxicity and behavior of graphene oxides in biological systems are fundamental issues that need urgent attention. The production of GO is generally achieved through a top‐down route, which includes the usage of concentrated H2SO4 along with: 1) concentrated nitric acid and KClO3 oxidant (Hoffmann); 2) fuming nitric acid and KClO3 oxidant (Staudenmaier); 3) concentrated phosphoric acid with KMnO4 (Tour); or 4) sodium nitrate for in‐situ production of nitric acid in the presence of KMnO4 (Hummers). It has been widely assumed that the properties of these four GOs produced by using the above different methods are roughly similar, so the methods have been used interchangeably. However, several studies have reported that the toxicity of graphene‐related nanomaterials in biological systems may be influenced by their physiochemical properties, such as surface functional groups and structural defects. In addition, considering how GOs are increasingly used in the field of biomedicine, we are interested to see how the oxygen content/functional groups of GOs can impact their toxicological profiles. Since in‐vitro testing is a common first step in assessing the health risks related with engineered nanomaterials, the cytotoxicity of the GOs prepared by the four different oxidative treatments was investigated by measuring the mitochondrial activity in adherent lung epithelial cells (A549) by using commercially available viability assays. The dose–response data was generated by using two assays, the methylthiazolyldiphenyl‐tetrazolium bromide (MTT) assay and the water‐soluble tetrazolium salt (WST‐8). From the viability data, it is evident that there is a strong dose‐dependent cytotoxic response resulting from the four GO nanomaterials tested after a 24 h exposure, and it is suggested that there is a correlation between the amounts of oxygen content/functional groups of GOs with their toxicological behavior towards the A549 cells.  相似文献   

3.
A novel series of imidazolone fused pyrazolo[1,5‐a]pyrimidine derivatives has been designed and synthesized using a convergent approach, and the structures of these compounds were confirmed by 1H NMR, 13C NMR, ESI‐MS, and IR analyses. These new compounds were tested for their in vitro antiproliferative activity using an 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay. Out of the 20 derivatives prepared in the current study, compounds 8h , 8n , and 8r exhibited good anticancer activities tested against HeLa cells and HepG2 cells. However, the in vitro anticancer activity of compound 8r against HeLa, HepG2, and MCF‐7 cell lines is superior to the marketed drugs Paclitaxel and SAHA.  相似文献   

4.
The aim of this study was to analyze the photostability and phototoxicity mechanism of anthracene (ANT) in a human skin epidermal cell line (HaCaT) at ambient environmental intensities of sunlight/UV‐R (UV‐A and UV‐B). Photomodification of ANT under sunlight/UV‐R exposure produced two photoproducts, anthrone and 9,10 anthracenedione. Generation of 1O2, O2?? and ?OH was measured under UV‐R/sunlight exposure. Involvement of reactive oxygen species (ROS) was further substantiated by their quenching with free radical quenchers. Photodegradation of 2‐deoxyguanosine and linoleic acid peroxidation showed that ROS were mainly responsible for ANT phototoxicity. ANT generates significant amount of intracellular ROS in cell line. Maximum cell viability (85%) was reduced under sunlight exposure (30 min). Results of MTT assay accord NRU assay. ANT (0.01 μg mL?1) induced cell‐cycle arrest at G1 phase. RT‐PCR demonstrated constitutive inducible mRNA expression of CYP 1A1 and 1B1 genes. Photosensitive ANT upregulates CYP 1A1 (2.2‐folds) and 1B1 (4.1‐folds) genes. Thus, the study suggests that ROS and DNA damage were mainly responsible for ANT phototoxicity. ANT exposure may be deleterious to human health at ambient environmental intensities reaching the earth’s surface through sunlight.  相似文献   

5.
Black phosphorus (BP) has been gathering great attention for its electronic and optoelectronic applications due to its high electron mobility and high ION/OFF current switching ratio. The limitations of this material include its low synthetic yield and high cost. One alternative to BP is another type of phosphorus allotrope, red phosphorus (RP), which is much more affordable and easier to process. Although RP has been widely used in industry for hundreds of years and considered as an insulating material, in this study, we demonstrate through field‐effect transistors (FET) measurements that amorphous red phosphorus (a‐RP) films are semiconductive with a high mobility of 387 cm2 V?1 s?1 and a current switching ratio of ≈103, which is comparable to the electronic characteristics previously reported for BP. The films were produced via a thermal evaporation method or a facile drop‐casting approach onto Si/SiO2 substrates. We also report a study of the oxidation process of the films over time and a method to stabilize the films via doping a‐RP with metal oxides. The doped films retain stability for one thousand I–V cycles, with no signs of degradation.  相似文献   

6.
《中国化学会会志》2017,64(1):87-93
A series of compounds 5‐amino‐2‐ethylmercapto‐4‐phenyl‐6‐subistitutedthieno[2,3‐d]pyrimidines ( 8a–d ), 4‐chloro‐7‐ethylmercapto‐9‐phenylpyrimido[5′,4′:4,5]thieno[3,2‐d]triazine ( 9 ), and 2‐ethylmercapto‐8‐oxo‐4‐phenyl‐7‐(4‐chlorophenyl)pyrimido [4′,5′:4,5]thieno[2,3‐d]pyrimidine ( 10 ) were synthesized and their structures were confirmed by 1H NMR , 13C NMR, and MS . All compounds were evaluated for their IC50 values against three cancer cell lines (MCF ‐7, HUH ‐7 and BHK ) and WISH cells. The IC50 of compound ( 8d ) was calculated for each cell line. Interestingly, the IC50 for the normal human amnion WISH cell line was much higher (723 µg/mL) than those found for the tumor cell lines BHK (17 µg/mL), HUH ‐7 (5.8 µg/mL), and MCF ‐7 (8.3 µg/mL). The proliferation inhibition of normal (WISH ) and tumor (BHK , HUH ‐7, and MCF ‐7) cells by compound ( 8d ) was investigated using MTT assay, and the IC50 was calculated after 48 h of treatment for each cell line.  相似文献   

7.
Efficient utilization of solar energy is a high‐priority target and the search for suitable materials as photocatalysts that not only can harvest the broad wavelength of solar light, from UV to near‐infrared (NIR) region, but also can achieve high and efficient solar‐to‐hydrogen conversion is one of the most challenging missions. Herein, using Au/La2Ti2O7 (BP‐Au/LTO) sensitized with black phosphorus (BP), a broadband solar response photocatalyst was designed and used as efficient photocatalyst for H2 production. The optimum H2 production rates of BP‐Au/LTO were about 0.74 and 0.30 mmol g−1 h−1 at wavelengths longer than 420 nm and 780 nm, respectively. The broad absorption of BP and plasmonic Au contribute to the enhanced photocatalytic activity in the visible and NIR light regions. Time‐resolved diffuse reflectance spectroscopy revealed efficient interfacial electron transfer from excited BP and Au to LTO which is in accordance with the observed high photoactivities.  相似文献   

8.
An optical anisotropic nature of black phosphorus (BP) is revealed by angle‐resolved polarized Raman spectroscopy (ARPRS), and for the first time, an all‐optical method was realized to identify the crystal orientation of BP sheets, that is, the zigzag and armchair directions. We found that Raman intensities of Ag1, B2g, and Ag2 modes of BP not only depend on the polarization angle α, but also relate to the sample rotation angle θ. Furthermore, their intensities reach the local maximum or minimum values when the crystalline orientation is along with the polarization direction of scattered light (es). Combining with the angle‐resolved conductance, it is confirmed that Ag2 mode intensity achieves a relative larger (or smaller) local maximum under parallel polarization configuration when armchair (or zigzag) direction is parallel to es. Therefore, ARPRS can be used as a rapid, precise, and nondestructive method to identify the crystalline orientation of BP layers.  相似文献   

9.
Black phosphorus (BP), a star‐shaped two‐dimensional material, has attracted considerable attention owing to its unique chemical and physical properties. BP shows great potential in photocatalysis area because of its excellent optical properties; however, its applications in this field have been limited to date. Now, a Z‐scheme heterojunction of 2D/2D BP/monolayer Bi2WO6 (MBWO) is fabricated by a simple and effective method. The BP/MBWO heterojunction exhibits enhanced photocatalytic performance in photocatalytic water splitting to produce H2 and NO removal to purify air; the highest H2 evolution rate of BP/MBWO is 21042 μmol g?1, is 9.15 times that of pristine MBWO and the NO removal ratio was as high as 67 %. A Z‐scheme photocatalytic mechanism is proposed based on monitoring of .O2?, .OH, NO2, and NO3? species in the reaction. This work broadens applications of BP and highlights its promise in the treatment of environmental pollution and renewable energy issues.  相似文献   

10.
Based on the photoinduced photothermal, photoelectric, and photocatalytic effects of black phosphorus (BP) nanosheets, a BP‐PAO fiber with enhanced uranium extraction capacity and high antibiofouling activity is fabricated by compositing BP nanosheets into polyacrylamidoxime (PAO). The photothermal effect increases the coordination interaction between UO22+ and the functional amidoxime group, and the photoelectric effect produces the surface positive electric field that exhibits electrostatic attraction to the negative [UO2(CO3)3]4?, which all increase the capacity for uranium adsorption. The photocatalytic effect endows the adsorbent with high antibiofouling activity by producing biotoxic reactive oxygen species. Owing to these three photoinduced effects, the photoinduced BP‐PAO fiber shows a high uranium adsorption capacity of 11.76 mg g?1, which is 1.50 times of the PAO fiber, in bacteria‐containing natural seawater.  相似文献   

11.
Homo‐ and heteroleptic bismuth thiolato complexes have been synthesised and characterised from biologically relevant tetrazole‐, imidazole‐, thiadiazole‐ and thiazole‐based heterocyclic thiones (thiols): 1‐methyl‐1H‐tetrazole‐5‐thiol (1‐MMTZ(H)); 4‐methyl‐4H‐1,2,4‐triazole‐3‐thiol (4‐MTT(H)); 1‐methyl‐1H‐imidazole‐2‐thiol (2‐MMI(H)); 5‐methyl‐1,3,4‐thiadiazole‐2‐thiol (5‐MMTD(H)); 1,3,4‐thiadiazole‐2‐dithiol (2,5‐DMTD(H)2); and 4‐(4‐bromophenyl)thiazole‐2‐thiol (4‐BrMTD(H)). Reaction of BiPh3 with 1‐MMTZ(H) produced the rare BiV thiolato complex [BiPh(1‐MMTZ)4], which undergoes reduction in DMSO to give [BiPh(1‐MMTZ)2{(1‐MMTZ(H)}2]. Reactions with PhBiCl2 or BiPh3 generally produced monophenylbismuth thiolates, [BiPh(SR)2]. The crystal structures of [BiPh(1‐MMTZ)2{1‐MMTZ(H)}2], [BiPh(5‐MMTD)2], [BiPh{2,5‐DMTD(H)}2(Me2C?O)] and [Bi(4‐BrMTD)3] were obtained. Evaluation of the bactericidal properties against M. smegmatis, S. aureus, MRSA, VRE, E. faecalis and E. coli showed complexes containing the anionic ligands 1‐ MMTZ, 4‐MTT and 4‐BrMTD to be most effective. The dithiolato dithione complexes [BiPh(4‐MTT)2{4‐MTT(H)}2] and [BiPh(1‐MMTZ)2{1‐MMTZ(H)}2] were most effective against all the bacteria: MICs 0.34 μM for [BiPh(4‐MTT)2{4‐MTT(H)}2] against VRE, and 1.33 μM for [BiPh(1‐MMTZ)2{1‐MMTZ(H)}2] against M. smegmatis and S. aureus. Tris‐thiolato BiIII complexes were least effective overall. All complexes showed little or no toxicity towards mammalian COS‐7 cells at 20 μg mL?1.  相似文献   

12.
Constructing efficient catalysts for the N2 reduction reaction (NRR) is a major challenge for artificial nitrogen fixation under ambient conditions. Herein, inspired by the principle of “like dissolves like”, it is demonstrated that a member of the nitrogen family, well‐exfoliated few‐layer black phosphorus nanosheets (FL‐BP NSs), can be used as an efficient nonmetallic catalyst for electrochemical nitrogen reduction. The catalyst can achieve a high ammonia yield of 31.37 μg h?1 mg?1cat. under ambient conditions. Density functional theory calculations reveal that the active orbital and electrons of zigzag and diff‐zigzag type edges of FL‐BP NSs enable selective electrocatalysis of N2 to NH3 via an alternating hydrogenation pathway. This work proves the feasibility of using a nonmetallic simple substance as a nitrogen‐fixing catalyst and thus opening a new avenue towards the development of more efficient metal‐free catalysts.  相似文献   

13.
Spontaneously solar‐driven water splitting to produce H2 and O2, that is, the conversion of solar energy to chemical energy is a dream of mankind. However, it is difficult to make overall water splitting feasible without using any sacrificial agents and external bias. Drawing inspiration from nature, a new artificial Z‐scheme photocatalytic system has been designed herein based on the two‐dimensional (2D) heterostructure of black phosphorus (BP)/bismuth vanadate (BiVO4). An effective charge separation makes possible the reduction and oxidation of water on BP and BiVO4, respectively. The optimum H2 and O2 production rates on BP/BiVO4 were approximately 160 and 102 μmol g?1 h?1 under irradiation of light with a wavelength longer than 420 nm, without using any sacrificial agents or external bias.  相似文献   

14.
From large‐scale production, two monocrystalline silicon solar cells of different quality, i.e. ISC = 3.0 A (good cell) and ISC = 1.6 A (bad cell), have been studied by XPS combined with 4 keV Ar+ depth profiling. Depth profiling was carried out through the anti‐reflection coating (TiO2), the passivation layer (SiO2) and up into the phosphorus‐doped silicon bulk. At the solar cell surface the elemental composition is similar for both cells, although the bad one presents slightly more carbon, phosphorus and lead but less silver than the good one. During profiling, carbon and silver could be followed by XPS. It was found that the carbon content is distinguishably higher in the bad cell than in the good one. Furthermore, it was found that silver atoms have not diffused in the same way in both cells. Only the good cell presents silver atoms up into the silicon bulk. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
This study aimed to analyze the phototoxic mechanism and photostability of quinine in human skin cell line A375 under ambient intensities of UVA (320–400 nm). Photosensitized quinine produced a photoproduct 6‐methoxy‐quinoline‐4‐ylmethyl‐oxonium identified through LC‐MS/MS. Generation of 1O2, O2??, and ?OH was measured and further substantiated through their respective quenchers. Photosensitized Quinine (Q) caused degradation of 2‐deoxyguanosine, the most sensitive nucleotide to UV radiation. The intracellular ROS was increased in a concentration‐dependent manner. Significant reduction in metabolic status measured in terms of cell viability (54%) at 25 μg mL?1 was observed through MTT assay. Results of MTT assay accord NRU assay. Single strand DNA breaks and apoptosis were increased significantly (< 0.01) as observed through comet assay and EB/AO double staining. Photosensitized quinine caused cells to arrest in G2 phase of cell cycle and induced apoptosis (5.08%) as revealed through FACS. Real‐Time PCR showed upregulation of p21 (4.56 folds) and p53 (2.811 folds) genes expression. Thus, our study suggests that generation of reactive oxygen species by quinine under ambient intensity of UVA may result into deleterious phototoxic effects among human population.  相似文献   

16.
Iron uptake and toxicity in Caco-2 cells   总被引:2,自引:0,他引:2  
The differences between the in vitro effects of iron attributed to valence, chelation, and complexation are known in terms of markers of oxidative stress. Few studies, however, describe the effects of iron on general markers of toxicity used in the testing of cell cultures. The aim of the present study was to determine the toxicity and uptake of different salts and iron complexes in the human intestinal cell line, Caco-2.Cells were incubated with 1.5 mM of different species of iron [FeCl3/nitrilotriacetic acid (NTA) (1:2), FeCl3/citric acid (1:2), FeCl3 and FeSO4] for 22–24 h. Thereafter, toxicological and uptake experiments were performed.The iron uptake, viability (via MTT assay), and membrane stability (via LDH release) of Caco-2 cells incubated with various iron forms differed significantly from untreated controls which showed no detrimental effects on cells and less iron uptake. The lowest signal for cell viability (MTT assay) was found after the incubation of the cells with FeCl3/citric acid, being significantly different to treatment with FeCl3, where the highest MTT signal was detected (p=0.002). No differences between the tested iron species could be found regarding cell proliferation (via serial cell counting) and viability using the trypan blue exclusion test. The lowest membrane damage (via LDH release) was registered in cells treated with FeCl3/citric acid (1:2), whereas the highest LDH release could be found in cells incubated with FeCl3/NTA (1:2). The highest intracellular iron concentration (measured via GFAAS) was detected after the treatment of Caco-2 cells with FeCl3 and FeCl3/NTA (1:2).This study substantiates the importance of the choice of complexes, as NTA seemed to enhance the toxicity of iron, while citric acid inhibited iron uptake and toxicity.  相似文献   

17.
In spite of the fact that cadmium(II) has been recognized as a highly toxic element and that excessive exposure to this metal ion has been reported to have many adverse effects on human health, very few selective and specific fluorescent probes are available for imaging Cd2+ in living cells. Herein, we report the spectroscopic and photochemical characterization of 5‐(5‐chloro‐8‐hydroxyquinolinylmethyl)‐2,8‐dithia‐5‐aza‐2,6‐pyridinophane ( L ) as a fluorescent sensor for the selective imaging of Cd2+ in living cells. In particular, the response of L to Cd2+ was first assessed in aqueous solutions, sodium dodecyl sulfate micelles, and liposomes, and subsequently in living cells by fluorescence microscopy techniques. Cytofluorimetric analyses of leukemic HL‐60 cells loaded with L also allowed evaluation of the toxicity of the probe and the selective analysis of its intracellular fluorescence in the presence of Cd2+. Furthermore, the 1:1 complex species [Cd( L )H2O]2+ responsible for the OFF–ON chelation enhancement of fluorescence (CHEF) effect on L was structurally characterized; time‐dependent DFT calculations allowed the prediction of theoretical excitations, which were comparable with the experimental ones.  相似文献   

18.
Halide octahedral molybdenum clusters [{Mo6X8}L6]n– possess luminescence properties that are highly promising for biological applications. These properties are rather dependent on the nature of both the inner ligands X (i.e. Cl, Br, or I) and the apical organic or inorganic ligands L. Herein, the luminescence properties and the toxicity of thiol‐modified polystyrene microbeads (PS‐SH) doped with [{Mo6X8}(NO3)6]2– (X = Cl, Br, I) were studied and evaluated using human epidermoid larynx carcinoma (Hep2) cell cultures. According to our data, the photoluminescence quantum yield of {Mo6I8}@PS‐SH is significantly higher (0.04) than that of {Mo6Cl8}@PS‐SH (<0.005) and {Mo6Br8}@PS‐SH (<0.005). Treatment of Hep2 cells with {Mo6X8}@PS‐SH showed that all three types of doped microbeads had no significant effect on the viability and proliferation of the cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The mechanisms of interaction of inorganic complexes with DNA are important in the design and development of new metal‐based drug molecules. The limitations of cis‐platin have encouraged the design and development of new metal‐based target‐specific anticancer drugs having reduced side effects. The complex cis‐dichloridobis(1,2,5‐thiadiazolo[3,4‐f][1,10]phenanthroline‐κ2N1,N10)copper(II), [CuCl2(C12H6N4S)2], has been synthesized and characterized. The complex crystallizes in the monoclinic space group C2/c. The covalent binding of the complex with DNA was studied by absorption spectroscopy. The anticancer activity of the complex on the Human Lung Carcinoma (A549) cell line was investigated by MTT assay. The complex exhibits higher toxicity than cis‐platin and induces an apoptotic mode of cell death.  相似文献   

20.
Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In‐depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus to guide the design of BP‐based composites for high‐performance alkali metal ion batteries. Comparative studies of the electrochemical reactions of Li+, Na+, and K+ with BP were performed. Ex situ X‐ray absorption near‐edge spectroscopy combined with theoretical calculation reveal the lowest utilization of BP for K+ storage than for Na+ and Li+, which is ascribed to the highest formation energy and the lowest ion diffusion coefficient of the final potassiation product K3P, compared with Li3P and Na3P. As a result, restricting the formation of K3P by limiting the discharge voltage achieves a gravimetric capacity of 1300 mAh g?1 which retains at 600 mAh g?1 after 50 cycles at 0.25 A g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号