首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the luminescent color tuning of a new complex, 2‐benzothiophenyl(4‐methoxyphenyl isocyanide)gold(I) ( 1 ), by using a new “polymorph doping” approach. The slow crystallization of the complex 1 afforded three different pure polymorphic crystals with blue, green, and orange emission under UV‐light irradiation. The crystal structures of pure polymorphs of 1 were investigated in detail by means of single‐crystal X‐ray analyses. Theoretical calculations based on the single‐crystal structures provided qualitative explanation of the difference in the excited energy‐levels of the three polymorphs of 1 . In sharp contrast, the rapid precipitation of 1 , with the optimized conditions reproducibly afforded homogeneous powder materials showing solid‐state white‐emission with Commission Internationale de l’Éclairage (CIE) 1931 chromaticity coordinates of (0.33, 0.35), which is similar to pure white. New “polymorphic doping” has been revealed to be critical to this white emission through spectroscopic and X‐ray diffraction analyses. The coexistence of the multiple polymorphs of 1 within the homogeneous powder materials and the ideal mixing of multiple luminescent colors gave its white emission accompanied with energy transfer from the predominant green‐emitting polymorph to the minor orange‐emitting polymorph.  相似文献   

2.
A series of highly efficient deep red to near‐infrared (NIR) emissive organic crystals 1 – 3 based on the structurally simple 2′‐hydroxychalcone derivatives were synthesized through a simple one‐step condensation reaction. Crystal 1 displays the highest quantum yield (Φf) of 0.32 among the reported organic single crystals with an emission maximum (λem) over 710 nm. Comparison between the bright emissive crystals 1 – 3 and the nearly nonluminous compounds 4 – 7 clearly gives evidence that a subtle structure modification can arouse great property changes, which is instructive in designing new high‐efficiency organic luminescent materials. Notably, crystals 1 – 3 exhibit amplified spontaneous emissions (ASE) with extremely low thresholds. Thus, organic deep red to NIR emissive crystals with very high Φf have been obtained and are found to display the first example of NIR fluorescent crystal ASE.  相似文献   

3.
Hydration water greatly impacts the color of inorganic crystals, but it is still unknown whether hydration water can be utilized to systematically manipulate the emission color of organic luminescent groups. Now, metal ions with different hydration ability allow fine‐tuning the emission color of a fluorescent group displaying aggregation induced emission (AIE). Because the hydration water can be removed easily by gentle heating or mechanical grinding and re‐gained by solvent fuming, rewritable materials can be fabricated both in the hot‐writing and cold‐writing modes. This hydration‐facilitated strategy will open up a new vista in fine‐tuning the emission color of AIE molecules based on one synthesis and in the design of smart luminescent devices.  相似文献   

4.
Ferroelasticity has been reported for several types of molecular crystals, which show mechanical‐stress‐induced shape change under twinning and/or spontaneous formation of strain. Aiming to create materials that exhibit both ferroelasticity and light‐emission characteristics, we discovered the first examples of ferroelastic luminescent organometallic crystals. Crystals of arylgold(I)(N‐heterocyclic carbene)(NHC) complexes bend upon exposure to anisotropic mechanical stress. X‐ray diffraction analyses and stress‐strain measurements on these ferroelastic crystals confirmed typical ferroelastic behavior, mechanical twinning, and the spontaneous build‐up of strain. A comparison with single‐crystal structures of related gold‐NHC complexes that do not show ferroelasticity shed light on the structural origins of the ferroelastic behavior.  相似文献   

5.
Metal–carbonyl complexes are attractive structures for bio‐imaging. In addition to unique vibrational properties due to the CO moieties enabling IR and Raman cell imaging, the appropriate choice of ancillary ligands opens up the opportunity for luminescence detection. Through a classification by techniques, past and recent developments in the application of metal–carbonyl complexes for vibrational and luminescence bio‐imaging are reviewed. Finally, their potential as bimodal IR and luminescent probes is addressed.  相似文献   

6.
Mechanofluorochromic or piezochromic fluorescence chemistry involves the switching and tuning of the luminescent properties of solid‐state materials induced by exogenous forces, such as grinding, shearing, compression, tension, and so forth. Up until now, most reported mechanochromic systems, including liquid crystals, organic molecules, organometallic compounds, polymers, and dye‐doped polymers, have displayed reversible two‐color changes, which arise from either supramolecular or chemical structure transformations. However, fluorescent materials that undergo mechanically induced multicolor changes remain rare; this Minireview is focused on such materials. Topics are categorized according to the different applied forces that are required to induce the multicolor change, including mechanical control of either the supramolecular structures or the chemical structures, and mechanical control of both the supramolecular structures and chemical structures.  相似文献   

7.
The combination of polymers with nucleic acids leads to materials with significantly advanced properties. To obviate the necessity and complexity of conjugating two macromolecules, a polymer initiator is described that can be directly covalently linked to DNA during solid‐phase synthesis. Polymer can then be grown from the DNA bound initiator, both in solution after the DNA‐initiator is released from the solid support as well as directly on the solid support, simplifying purification. The resulting polymer‐DNA hybrids were examined by chromatography and fluorescence methods that attested to the integrity of hybrids and the DNA. The ability to use DNA‐based supports expands the range of readily available molecules that can be used with the initiator, as exemplified by direct synthesis of a biotin polymer hybrid on solid‐support. This method expands the accessibility and range of advanced polymer biohybrid materials.  相似文献   

8.
In the 21st century, soft materials will become more important as functional materials because of their dynamic nature. Although soft materials are not as highly durable as hard materials, such as metals, ceramics, and engineering plastics, they can respond well to stimuli and the environment. The introduction of order into soft materials induces new dynamic functions. Liquid crystals are ordered soft materials consisting of self‐organized molecules and can potentially be used as new functional materials for electron, ion, or molecular transporting, sensory, catalytic, optical, and bio‐active materials. For this functionalization, unconventional materials design is required. Herein, we describe new approaches to the functionalization of liquid crystals and show how the design of liquid crystals formed by supramolecular assembly and nano‐segregation leads to the formation of a variety of new self‐organized functional materials.  相似文献   

9.
Interactive materials being responsive to a biocompatible stimulus represent a promising approach for future therapeutic applications. In this study, we present a novel biohybrid material synthesized from biocompatible components being stimulus‐responsive to the pharmaceutically approved small‐molecule novobiocin. The hydrogel design is based on the gyrase B (GyrB) protein, which is covalently grafted to multi‐arm polyethylene glycol (PEG) using a Michael‐type addition reaction. Upon addition of the GyrB‐dimerizing substance coumermycin, stable hydrogels form which can be dissolved in a dose‐adjustable manner by the antibiotic novobiocin. The switchable properties of this PEG‐based hydrogel are favorable for future applications in tissue engineering and as externally controlled drug depot.  相似文献   

10.
Anisotropic microarchitectures with different physicochemical properties have been developed as advanced materials for challenging industrial and biomedical applications including switchable displays, multiplexed biosensors and bioassays, spatially‐controlled drug delivery systems, and tissue engineering scaffolds. In this study, anisotropic biohybrid microparticles (MPs) spatio‐selectively conjugated with two different antibodies (Abs) are first developed for fluorescence‐based, multiplexed sensing of biological molecules. Poly(acrylamide‐co‐acrylic acid) is chemically modified with maleimide‐ or acetylene groups to introduce different targeting biological moieties into each compartment of anisotropic MPs. Modified polymer solutions containing two different fluorescent dyes are separately used for electrohydrodynamic co‐jetting with side‐by‐side needle geometry. The anisotropic MPs are chemically stabilized by thermal imidization, followed by bioconjugation of two different sets of polyclonal Abs with two individual compartments via maleimide‐thiol coupling reaction and Huisgen 1,3‐dipolar cycloaddition. Finally, two compartments of the anisotropic biohybrid MPs are spatio‐selectively associated with the respective monoclonal Ab‐immobilized substrate in the presence of the antigen by sandwich‐type immunocomplex formation, resulting in their ordered orientation due to the spatio‐specific molecular interaction, as confirmed by confocal laser scanning microscopy. In conclusion, anisotropic biohybrid MPs capable of directional binding have great potential as a new fluorescence‐based multiplexing biosensing system.

  相似文献   


11.
o‐Carborane, a cluster compound containing boron and adjacent carbon atoms, displays intriguing luminescent properties. Recently, compounds containing o‐carborane units were found to show suppressed aggregation‐induced quenching and intense solid‐state emission; they also show potential for the development of stimuli‐responsive luminochromic materials. In this Minireview, we introduce three kinds of fundamental photochemical properties: aggregation‐induced emission, twisted intramolecular charge transfer in crystals, and environment‐sensitive excimer formation in solids. Based on these properties, several types of luminochromism, such as thermos‐, vapo‐, and mechanochromism, have been discovered. Based mainly on results from recent studies, we illustrate these mechanisms as well as unique luminescent behaviors of o‐carborane derivatives.  相似文献   

12.
Self‐assembly of luminescent moieties into porous metal–organic frameworks (MOFs) has generated many luminescent platforms for probing volatile organic molecules (VOMs). However, most of those explored thus far have only been based on the luminescence intensity of one transition, which is not efficient for probing different VOMs. We have synthesized a luminescent MOF material containing 1D nanotube channels, and further developed a luminescent dye@MOF platform to realize the probing of different VOMs by tuning the energy transfer efficiency between two different emissions. The dye@MOF platform exhibits excellent fingerprint correlation between the VOM and the emission peak‐height ratio of ligand to dye moieties. The dye@MOF sensor is self‐calibrating, stable, and instantaneous, thus the approach should be a very promising strategy to develop luminescent materials with unprecedented practical applications.  相似文献   

13.
In the present work, new classes of bio‐based polybenzoxazines were synthesized using eugenol as phenol source and furfurylamine and stearylamine as amine sources separately through solventless green synthetic process routes and were further reinforced with varying percentages (1, 3, 5, and 10 wt%) of silica (from rice husk) to attain hybrid composites. The molecular structure, cure behaviour, thermal stability, dielectric properties, and flame‐retardant behaviour of both benzoxazine monomers and benzoxazine composites were characterized using appropriate modern analytical techniques. The eugenol‐based benzoxazines synthesized using furfurylamine (FBz) and stearylamine (SBz) were cured at 223°C and 233°C, respectively. The differential scanning calorimetry (DSC) data reveal the glass transition temperatures (Tg) of FBz and SBz were 157°C and 132°C, respectively, and the maximum decomposition temperature (Tmax) as obtained from thermogravimetric analysis (TGA), were found to be 464°C and 398°C for FBz and SBz, respectively. The dielectric constants for FBz and SBz obtained at 1 MHz were 3.28 and 3.62, respectively. Furthermore, varying weight percentages (1, 3, 5, and 10 wt%) of 3‐mercaptopropyltrimethoxysilane (3‐MPTMS) functionalized bio‐silica reinforced the composite materials as evidenced by their improved thermal stability and lower dielectric constant. Data obtained from thermal and dielectric studies suggested that these polybenzoxazines could be used in the form of adhesives, sealants, and composites for high performance inter‐layer low‐k dielectric applications in microelectronics.  相似文献   

14.
For the design of a biohybrid structure as a ligand‐tailored drug delivery system (DDS), it is highly sophisticated to fabricate a DDS based on smoothly controllable conjugation steps. This article reports on the synthesis and the characterization of biohybrid conjugates based on noncovalent conjugation between a multivalent biotinylated and PEGylated poly(amido amine) (PAMAM) dendrimer and a tetrameric streptavidin‐small protein binding scaffold. This protein binding scaffold (SA‐ABDwt) possesses nM affinity toward human serum albumin (HSA). Thus, well‐defined biohybrid structures, finalized by binding of one or two HSA molecules, are available at each conjugation step in a controlled molar ratio. Overall, these biohybrid assemblies can be used for (i) a controlled modification of dendrimers with the HSA molecules to increase their blood‐circulation half‐life and passive accumulation in tumor; (ii) rendering dendrimers a specific affinity to various ligands based on mutated ABD domain, thus replacing tedious dendrimer–antibody covalent coupling and purification procedures.

  相似文献   


15.
Programming materials with tunable physical and chemical interactions among its components pave the way of generating 3D functional active microsystems with various potential applications in tissue engineering, drug delivery, and soft robotics. Here, the development of a recapitulated fascicle‐like implantable muscle construct by programmed self‐folding of poly(ethylene glycol) diacrylate hydrogels is reported. The system comprises two stacked layers, each with differential swelling degrees, stiffnesses, and thicknesses in 2D, which folds into a 3D tube together. Inside the tubes, muscle cell adhesion and their spatial alignment are controlled. Both skeletal and cardiac muscle cells also exhibit high viability, and cardiac myocytes preserve their contractile function over the course of 7 d. Integration of biological cells with smart, shape‐changing materials could give rise to the development of new cellular constructs for hierarchical tissue assembly, drug testing platforms, and biohybrid actuators that can perform sophisticated tasks.  相似文献   

16.
Novel structures of luminescent materials, which are used as light sources for next‐generation illumination, are continuously being improved for use in white‐light‐emitting diodes. Activator‐doped known structures are reported as habitual down‐conversion phosphors in solid‐state lightings and displays. Consequently, the intrinsic qualities of the existent compounds produce deficiencies that limit their applications. Herein we report a spiral‐network single‐crystal orthophosphate (LiSrPO4) prepared in a platinum crucible with LiCl flux through crystal‐growth reactions of SrCl2 and Li3PO4 in air. It crystallizes in a hexagonal system with a=5.0040(2) and c=24.6320(16) Å, V=534.15(5) Å3, and Z=6 in the space group P65. The unit cell is comprised of LiO4 and PO4 tetrahedrons that form a three‐dimensional LiPO42? anionic framework with a helical channel structure along the c axis in which the Sr2+ cation is accommodated. The optical band gap of this composition is about 3.65 eV, as determined by using UV/Vis absorption and diffuse reflection spectra. We used the crystal‐growth method to synthesize blue‐ and red‐emitting crystals that exhibited pure color, low reabsorption, a large Stokes shift, and efficient conversion of ultraviolet excitation light into visible light. Emphasis was placed on the development of gratifying structure‐related properties of rare‐earth luminescent materials and their applications.  相似文献   

17.
Higher efficiency in the end‐use of energy requires substantial progress in lighting concepts. All the technologies under development are based on solid‐state electroluminescent materials and belong to the general area of solid‐state lighting (SSL). The two main technologies being developed in SSL are light‐emitting diodes (LEDs) and organic light‐emitting diodes (OLEDs), but in recent years, light‐emitting electrochemical cells (LECs) have emerged as an alternative option. The luminescent materials in LECs are either luminescent polymers together with ionic salts or ionic species, such as ionic transition‐metal complexes (iTMCs). Cyclometalated complexes of IrIII are by far the most utilized class of iTMCs in LECs. Herein, we show how these complexes can be prepared and discuss their unique electronic, photophysical, and photochemical properties. Finally, the progress in the performance of iTMCs based LECs, in terms of turn‐on time, stability, efficiency, and color is presented.  相似文献   

18.
We successfully developed phosphorescent cyclometallated iridium‐containing metallopolymers, which are near‐red luminescent iridium complexes bearing phosphine‐containing copolymers used as polymer ligands, and investigated their photoluminescence and electroluminescence behavior. The phosphine copolymer ligand made from methyl methacrylate and 4‐styryldiphenylphosphine can be used as an anchor, which coordinates luminescent iridium units to form the metallopolymer easily. Organic light‐emitting diodes were fabricated from the metallopolymer and its nonpolymer analog, [IrCl(piq)2PPh3]. These complexes exhibited quite similar luminescence behavior, except for emission from the free‐phosphine‐units in the polymer side chain and their energy‐transferring properties from host to guest materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4366–4378, 2009  相似文献   

19.
Metal–organic frameworks (MOFs) are among the most attractive porous materials known today, exhibiting very high surface areas, tuneable pore sizes and shapes, adjustable surface functionality, and flexible structures. Advances in the formation of MOF crystals, and in their subsequent assembly into more complex and/or composite superstructures, should expand the scope of these materials in many applications (e.g., drug delivery, chemical sensors, selective reactors and removal devices, etc.) and facilitate their integration onto surfaces and into devices. This Concept article aims to showcase recently developed synthetic strategies to control the one‐, two‐ and three‐dimensional (1‐, 2‐ and 3D) organisation of MOF crystals.  相似文献   

20.
Colloidal crystals are interesting materials owing to their customizable photonic properties, high surface area, and analogy to chemical structures. The flexibility of these materials has been greatly enhanced through mixing particles with varying sizes, compositions, and surface charges. In this way, distinctive patterns or analogies to chemical stoichiometries are produced; however, to date, this body of research is limited to particles with nanoscale dimensions. A simple method is now presented for bottom‐up assembly of non‐Brownian particle mixtures to create a new class of hierarchically‐ordered materials that mimic those found in nature (both in pore distribution as well as stoichiometry). Additionally, these crystals serve as a template to create particle‐based inverted crystalline structures with customizable properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号