首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Designed transition metal complexes predominantly catalyze Michael addition reactions. Inorganic and organic base‐catalyzed Michael addition reactions have been reported. However, known base‐catalyzed reactions suffer from the requirement of solvents, additives, high pressure and also side‐reactions. Herein, we demonstrate a mild and environmentally friendly strategy of readily available KOtBu‐catalyzed Michael addition reactions. This simple inorganic base efficiently catalyzes the Michael addition of underexplored acrylonitriles, esters and amides with (oxa‐, aza‐, and thia‐) heteroatom nucleophiles. This catalytic process proceeds under solvent‐free conditions and at room temperature. Notably, this protocol offers an easy operational procedure, broad substrate scope with excellent selectivity, reaction scalability and excellent TON (>9900). Preliminary mechanistic studies revealed that the reaction follows an ionic mechanism. Formal synthesis of promazine is demonstrated using this catalytic protocol.  相似文献   

2.
A sequential one‐pot synthesis of N‐sulfonylcyclothioureas from N‐monosulfonyl diamines, CS2 and chloroacetic acid at room temperature in water is described. In the absence of highly toxic thiophosgene and organic solvents, this method is environmentally benign. Simple reaction conditions, easy purification of the products, good yields and thioglycolic acid as the useful byproduct are also important attributes of this methodology. The plausible mechanism including tandem reactions is proposed.  相似文献   

3.
Thiourea dioxide was immobilized on γ‐Fe2O3@Cu3Al‐LDH magnetic nanoparticles to prepare the γ‐Fe2O3@Cu3Al‐LDH‐TUD MNPs. The structure and properties of these magnetic nanoparticles were established by FT‐IR, EDX, SEM, XRD, and hystogram of particle size analytical methods. The results obtained from these analytical methods confirmed the successful immobilization of the thiourea dioxide onto the magnetic support. The synthesized magnetic nanoparticles (MNPs) exhibited high catalytic activity in one‐pot three‐component reactions under mild and solvent‐free conditions for the synthesis of diverse ranges of dihydropyrano[3,2‐c]pyrazoles and dihydropyrano[3,2‐c]chromens. All the reactions proceeded smoothly to furnish the respective products in excellent yields. Simple isolation of the products, avoidance of harmful organic solvents, versatility of the catalyst and its easy magnetic separation and reusability with no significant loss of activity are the main advantages of the present method.  相似文献   

4.
《中国化学会会志》2017,64(9):1071-1078
A facile and benign synthetic strategy is proposed for the synthesis of 2‐arylpyrroloacridin‐1(2H )‐ones via a lactic acid‐catalyzed three‐component reaction of dimedone, various anilines, and isatins under solvent‐free conditions. Avoidance of hazardous organic solvents, the use of a one‐pot multicomponent procedure for the synthesis of 2‐arylpyrroloacridin‐1(2H )‐ones, operational simplicity, no need for column chromatography, lactic acid utilization as a bio‐based organic compound, reusability, homogeneity, and commercial availability of the catalyst, and superior synthetic performance are some important aspects of this methodology to access a series of pyrroloacridine motifs with potentially biological scaffolds.  相似文献   

5.
Designing reactions in aqueous media has been one of the major challenges in modern organic synthesis, especially to avoid the use of large amounts of organic solvents whose disposal is a matter of grave concern from an environmental perspective. The oxidation of alcohols and amines is an essential and important step in the synthesis of many valuable products including polymers and pharmaceuticals. In recent times, there has been a surge in the use of water as a solvent in many organic reactions. This review focuses specifically on the oxidation reactions of alcohols and amines carried out in water media using transition metal catalysts, metal‐free catalysts and photocatalysts.  相似文献   

6.
N‐acyliminium ions are reactive intermediates that can act as electron‐deficient electrophiles toward weak or soft nucleophiles, thereby providing useful methods for both intermolecular‐ and intramolecular carbon–carbon and carbon–heteroatom bond formation. Nucleophilic additions to N‐acyliminium ions constitute an important method for providing α‐functionalized amino compounds and many other biologically active nitrogen‐containing heterocycles. The development of efficient catalytic asymmetric reactions is a key objective in modern organic chemistry and is very important for the synthesis of natural products, pharmaceuticals, and agrochemicals. Various methods are available for this purpose and mostly rely on the use of chiral catalysts for enantioselective synthesis. This review deals with one aspect of such catalysis, which has emerged only in the past few years, and its applications in enantioselective reactions of N‐acyliminium ions to provide various nitrogen‐containing heterocycles.  相似文献   

7.
The cycloadditions of (E)‐3‐diazenylbut‐2‐enes 1 with a variety of alkenes 2 – 6 were carried out in water as well as in organic solvents. The reactions were always faster in heterogeneous aqueous medium than in the organic solvents. These conjugated diazenyl‐alkenes behave mainly as heterodienes, and the Diels‐Alder adducts are the sole or at least main reaction products. Pyrroles derived from zwitterionic [3+2] cycloaddition reactions were observed in some cases. The cycloaddition of 1a with (+)‐2‐(ethenyloxy)‐3,7,7‐trimethylbicyclo[4.1.0]heptane ( 5 ) is the first example of an asymmetric `inverse electron‐demand' Diels‐Alder reaction carried out in pure water.  相似文献   

8.
Cu‐catalyzed aerobic oxidations of readily available 3‐N‐hydroxyaminopro‐1‐ynes with water, alcohols, or thiols to form diverse 3‐substituted 3‐amino‐2‐en‐1‐ones are described. The utility of this catalysis is manifested by a wide scope of applicable N‐hydroxyl propargylamines and nucleophiles, thus enabling the design of one‐pot cascade or two‐step sequential reactions. Besides synthetic significances, such oxidative Mannich reactions are mechanistically interesting because structurally reorganized products were obtained. Our mechanistic studies reveal that the aerobic oxidations involve initial formation of nitrone intermediates, followed by the attack of nucleophiles. Herein, water and MeOH implement the conversion of nitrone intermediates to reaction products in two distinct pathways.  相似文献   

9.
A new green protocol has been developed for the synthesis of 12‐aryl‐8,9,10,12‐tetrahydrobenzo[a]xanthen‐11‐ones using guanidine hydrochloride as an organocatalyst under solvent‐free conditions. Operational simplicity, mild reaction conditions, enhanced rates, high isolated yields of the pure products, and purification of products by nonchromatographic methods are significant advantages of the protocol presented here.  相似文献   

10.
Sodium lauryl sulfate has been found convenient, versatile, and eco‐friendly catalyst for the synthesis of 1,2,4,5‐tetrasubstituted and 2,4,5‐trisubstituted imidazole derivatives by one‐pot multicomponent reactions at 80°C using water as solvent. This protocol afforded advantages, that is, the metal‐free reaction, purification of products by non‐chromatographic method, and excellent yields.  相似文献   

11.
4‐(1‐Imidazolium) butane sulfonate is an excellent catalyst for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles through the condensation of 1,2‐dicarbonyl compounds, aldehydes, and ammonium acetate or amine via multicomponent condensation strategy under solvent‐free conditions. The key advantages of this process are high yields, reusability of catalyst, environmental friendliness, easy work‐up and purification of products by nonchromatographic methods.  相似文献   

12.
A highly diastereoselective synthesis of trisubstituted Z‐ or E‐enals, which are important intermediates in organic synthesis, as well as being present in natural products, is described using different alkynals and nucleophiles as starting materials. Diastereocontrol is mainly governed by the appropriate catalyst. Therefore, those reactions controlled by steric effects, such as the Jørgensen–Hayashi's catalyst, give access to E isomers, and those catalysts that facilitate hydrogen bonding, such as tetrazol‐pyrrolidine Ley's catalyst, allow the synthesis of Z isomers. A stereochemical model based on DFT calculations is proposed.  相似文献   

13.
We investigated the generation and the reactivity of selected 1,2‐diaryl‐1,2‐disodioethanes employing cyclopentyl methyl ether and 2‐methyltetrahydrofuran as green solvent alternatives to tetrahydrofuran. Both solvents proved suitable for the generation of these vic‐diorganometals, as well as for their employment as single‐electron transfer reagents. On the other hand, 2‐methyltetrahydrofuran appears as the solvent of choice in reactions involving the employment of these diorganometals as nucleophiles or bases. Accordingly, our results disclose an environmentally more sustainable approach to the chemistry of these diorganometals and, in a wider sense, to reductive metalation reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Molten tetra‐n‐butylphosphonium bromide is found to be a practical and inexpensive catalytic media for stereoselective one‐pot synthesis of pyranoquinoline and furanoquinoline derivatives in good to excellent yields. Products of undesirable reactions resulting from polymerization are not observed. The use of this catalyst media avoids the use of any cocatalysts or toxic organic solvents. J. Heterocyclic Chem., (2011).  相似文献   

15.
In this paper, a novel synthesis of diversely substituted 2H‐pyran‐2‐ones via the tandem reaction of 3‐hydroxyhexa‐4,5‐allenic esters in water under the promotion of MWI has been developed. Compared with those reactions carried out in organic solvents, water mediated synthesis of poly‐substituted 2H‐pyran‐2‐ones is not only environmentally sustainable, but also chemo‐selectively favorable.  相似文献   

16.
In this study, we report the harnessing of new reactivity of N,O‐acetals in an aminocatalytic fashion for organic synthesis. Unlike widely used strategies requiring the use of acids and/or elevated temperatures, direct replacement of the amine component of the N,O‐acetals by carbon‐centered nucleophiles for C?C bond formation is realized under mild reaction conditions. Furthermore, without necessary preformation of the N,O‐acetals, an amine‐catalyzed in situ formation of N,O‐acetals is developed. Coupling both reactions into a one‐pot operation enables the achievement of a catalytic process. We demonstrate the employment of simple anilines as promoters for the cyclization–substitution cascade reactions of trans‐2‐hydroxycinnamaldehydes with various carbonic nucleophiles including indoles, pyrroles, naphthols, phenols, and silyl enol ethers. The process offers an alternative approach to structurally diverse, “privileged” 2‐substituted 2H‐chromenes. The synthetic power of the new process is furthermore shown by its application in a 2‐step synthesis of the natural product candenatenin E and for the facile installation of 2‐substituted 2H‐chromene moieties into biologically active indoles.  相似文献   

17.
Boronate affinity has attracted much attention in recent years. It has been broadly used for selective isolation and enrichment of cis‐diol‐containing molecules. Conventionally, the cis‐diols are adsorbed in mild alkaline aqueous solutions. In this work, for the first time, we found that boronate affinity adsorption could also be performed in nonaqueous solvent at nonbasic pH. Cis‐diol‐containing compounds present in herbal medicines were used for the adsorption test. The results indicated that all compounds obtained higher recoveries in the organic solvents (methanol, acetonitrile, ethyl acetate) compared with alkaline buffer. The adsorption of vicinal cis‐diol‐containing molecules in organic solvents could be accomplished rapidly, with high selectivity and high recoveries (>80%). These results shed light on the possibility of boronate affinity adsorption in nonaqueous solvents. The results are very important for the isolation and enrichment of cis‐diols, which have poor solubility in water, especially for those in herbal medicines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In the present work, a new protocol was introduced for the preparation of an efficient hybrid nanocatalyst ZnS‐ZnFe2O4 via the co‐precipitation method as well as its application in the synthesis of 2,4,5‐triaryl‐1H‐imidazoles derivatives starting from various aromatic aldehydes, benzil and ammonium acetate under ultrasonic irradiation in ethanol. ZnS‐ZnFe2O4 was characterized by Fourier transform infrared (FT‐IR) spectroscopy, energy‐dispersive X‐ray spectroscopy (EDS) analysis, scanning electron microscopy (SEM) image, X‐ray diffraction (XRD) pattern and vibrating sample magnetometer (VSM) curve. This method has advantages such as high efficiency of the heterogeneous catalyst, the use of environmentally‐friendly solvent, high yields, short reaction times and easy isolation of the products and chromatography‐free purification. Our outcomes illustrated that the present nanocatalyst with nearly spherical and Cauliflower‐like morphology and average particle size of 36 nm could be applied as an effective and magnetically recyclable catalyst without any significant decreasing of activity. Furthermore, the synergic effect of bimetallic Lewis acids was studied for the synthesis of imidazole derivatives.  相似文献   

19.
A one‐pot synthesis of oxazine derivatives via reaction between activated acetylenic compounds, benzoyl cyanide, and N‐nucleophiles in water as the solvent is described?.  相似文献   

20.
The rates of the Diels–Alder reaction of 9‐(hydroxymethyl)anthracene and 9,10‐bis(hydroxymethyl)anthracene with maleic anhydride and two maleimides, N‐ethyl‐ and N‐phenylmaleimide, have been studied at various temperatures and pressures in different solvent media. A rate acceleration in water in comparison with organic solvents is observed. Thermodynamic functions of activation for the reaction of 9,10‐bis(hydroxymethyl)anthracene with N‐ethylmaleimide in binary 1,4‐dioxane–water mixtures are determined. From the observed tendencies, it can be concluded that acceleration of the Diels–Alder reactions in water is linked with an energetically favorable dehydration of the reaction centers of the reactants on the way to the activated complex. Addition of an organic cosolvent makes the desolvation of these centers less favorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号