首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Model structures of 1,3,5‐triarylbenzenes with a substituted benzene core linked to thienyl or 3,4‐ethylenedioxythienyl (EDOT) terminal groups are studied by electrochemical and in situ ESR/UV/Vis/NIR spectroelectrochemical techniques. Oxidative polymerization of the monomers results in C? C coupling of the thiophene moieties in the 5‐position, forming dimeric structures with bithiophene linkers as the first step. Both the doubly charged protonated dimer and the new dimer formed after proton release are studied in detail for 2,4,6‐tris[2‐(3,4‐ethylenedioxythienyl)]‐1‐methoxybenzene. Quite high stability of the doubly charged σ dimer formed on oxidation with unusual redox behavior at the electrode is observed. Density functional calculations of the molecular structure as well as spectroscopic and electronic properties of charged states in 1,3,5‐triarylbenzene derivatives in the monomeric, dimeric, and oligomeric form are presented. The complex spectroelectrochemical response of a thin solid film formed on the electrode surface upon potentiodynamic polymerization indicates the existence of different charge states of oligomeric structures within the solid matrix.  相似文献   

2.
We carried out density functional calculations to study the adsorption of Co13 clusters on graphene. Several free isomers were deposited at different positions with respect to the hexagonal lattice nodes, allowing us to study even the hcp 2d isomer, which was recently obtained as the most stable one. Surprisingly, the Co13 clusters attached to graphene prefer icosahedron‐like structures in which the low‐lying isomer is much distorted; in such structures, they are linked with more bonds than those reported in previous works. For any isomer, the most stable position binds to graphene by the Co atoms that can lose electrons. We find that the charge transfer between graphene and the clusters is small enough to conclude that the Co–graphene binding is not ionic‐like but chemical. Besides, the same order of stability among the different isomers on doped graphene is kept. These findings could also be of interest for magnetic clusters on graphenic nanostructures such as ribbons and nanotubes.  相似文献   

3.
4.
Two low‐symmetry phthalocyanines (Pcs) substituted with thiophene units at the non‐peripheral (α) and peripheral (β) positions were synthesized and their optical, electronic‐structure, and electrochemical properties were investigated. The substitution of thiophene units at the α positions of the phthalocyanine skeleton resulted in a red shift of the Q band and significantly modified the molecular‐orbital electronic distributions just below the HOMO and just above the LUMO, with distortion of the typical Gouterman four‐orbital arrangement of MOs. Two amphiphilic Ω‐shaped ZnPcs ( αPcS1 and αPcS2 ) bearing a π‐conjugated side chain with an adsorption site at an α position of the Pc macrocycle were synthesized as sensitizers for dye‐sensitized solar cells (DSSCs). The absorption spectra of αPcS1 and αPcS2 showed red shifted Q bands and a broad band from 350 to 550 nm assignable to the intramolecular charge‐transfer transition from the ZnPc core to the side chains. Time‐dependent DFT calculations provided a clear interpretation of the effect of the thiophene conjugation on the typical phthalocyanine core π MOs. Compound αPcS1 was used as a light‐harvesting dye on a TiO2 electrode for a DSSC, which showed a panchromatic response in the range 400–800 nm with a power conversion efficiency of 5.5 % under one‐sun conditions.  相似文献   

5.
We have prepared a simple star‐shaped oligo(aniline) ( TDPB ) and characterised it in detail by MALDI‐TOF MS, UV/Vis/NIR spectroscopy, time‐dependent DFT, cyclic voltammetry and EPR spectroscopy. TDPB is part of an underdeveloped class of π‐conjugated molecules with great potential for organic electronics, display and sensor applications. It is redox active and reacts with acids to form radical cations. Acid‐doped TDPB shows behaviour similar to discotic liquid crystals, with X‐ray scattering investigations revealing columnar self‐assembled arrays. The combination of unpaired electrons and supramolecular stacking suggests that star‐shaped oligo(aniline)s like TDPB have the potential to form conducting nanowires and organic magnetic materials.  相似文献   

6.
Novel conjugated, pyridyl‐functionalised triazaphospholes with either tBu or SiMe3 substituents at the 5‐position of the N3PC heterocycle have been prepared by a [3+2] cycloaddition reaction and compared with structurally related, triazole‐based systems. Photoexcitation of the 2‐pyridyl‐substituted triazaphosphole gives rise to a significant fluorescence emission with a quantum yield of up to 12 %. In contrast, the all‐nitrogen triazole analogue shows no emission at all. DFT calculations indicate that the 2‐pyridyl substituted systems have a more rigid and planar structure than their 3‐ and 4‐pyridyl isomers. Time‐dependent (TD) DFT calculations show that only the 2‐pyridyl‐substituted triazaphosphole exhibits similar planar geometry, with matching conformational arrangements in the lowest energy excited state and the ground state; this helps to explain the enhanced emission intensity. The chelating P,N‐hybrid ligand forms a ReI complex of the type [(N^N)Re(CO)3Br] through the coordination of nitrogen atom N2 to the metal centre rather than through the phosphorus donor. Both structural and spectroscopic data indicate substantial π‐accepting character of the triazaphosphole, which is again in contrast to that of the all‐nitrogen‐containing triazoles. The synthesis and photophysical properties of a new class of phosphorus‐containing extended π systems are described.  相似文献   

7.
8.
Density functional theory (DFT) calculations are used to explore water adsorption and activation on different α‐Ga2O3 surfaces, namely (001), (100), (110), and (012). The geometries and binding energies of molecular and dissociative adsorption are studied as a function of coverage. The simulations reveal that dissociative water adsorption on all the studied low‐index surfaces are thermodynamically favorable. Analysis of surface energies suggests that the most preferentially exposed surface is (012). The contribution of surface relaxation to the respective surface energies is significant. Calculations of electron local density of states indicate that the electron‐energy band gaps for the four investigated surfaces appears to be less related to the difference in coordinative unsaturation of the surface atoms, but rather to changes in the ionicity of the surface chemical bonds. The electrochemical computation is used to investigate the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on α‐Ga2O3 surfaces. Our results indicate that the (100) and (110) surfaces, which have low stability, are the most favorable ones for HER and OER, respectively.  相似文献   

9.
Manganese is involved as a cofactor in the activation of numerous enzymes as well as the oxygen‐evolving complex of photosystem II. Full understanding of the role played by the Mn2+ ion requires detailed knowledge of the interaction modes and energies of manganese with its various environments, a knowledge that is far from complete. To bring detailed insight into the local interactions of Mn in metallopeptides and proteins, theoretical studies employing first‐principles quantum mechanical calculations are carried out on [Mn‐amino acid]2+ complexes involving all 20 natural α‐amino acids (AAs). Detailed investigation of [Mn‐serine]2+, [Mn‐cysteine]2+, [Mn‐phenylalanine]2+, [Mn‐tyrosine]2+, and [Mn‐tryptophan]2+ indicates that with an electron‐rich side chain, the most stable species involves interaction of Mn2+ with carbonyl oxygen, amino nitrogen, and an electron‐rich section of the side chain of the AA in its canonical form. This is in sharp contrast with aliphatic side chains for which a salt bridge is formed. For aromatic AAs, complexation to manganese leads to partial oxidation as well as aromaticity reduction. Despite multisite binding, AAs do not generate strong enough ligand fields to switch the metal to a low‐ or even intermediate‐spin ground state. The affinities of Mn2+ for all AAs are reported at the B3LYP and CCSD(T) levels of theory, thereby providing the first complete series of affinities for a divalent metal ion. The trends are compared with those of other cations for which affinities of all AAs have been previously obtained.  相似文献   

10.
The linear and non‐linear optical properties of a family of dumbbell‐shaped dinuclear complexes, in which an oligothiophene chain with various numbers of rings (1, 3, and 6) acts as a bridge between two homoleptic tris(2,2′‐bipyridine)ruthenium(II) complexes, have been fully investigated by using a range of spectroscopic techniques (absorption and luminescence, transient absorption, Raman, and non‐linear absorption), together with density functional theory calculations. Our results shed light on the impact of the synergistic collaboration between the electronic structures of the two chemical moieties on the optical properties of these materials. Experiments on the linear optical properties of these compounds indicated that the length of the oligothiophene bridge was critical for luminescent behavior. Indeed, no emission was detected for compounds with long oligothiophene bridges (compounds 3 and 4 , with 3 and 6 thiophene rings, respectively), owing to the presence of the 3π? π* state of the conjugated bridge below the 3MLCT‐emitting states of the end‐capping RuII complexes. In contrast, the compound with the shortest bridge ( 2 , one thiophene ring) shows excellent photophysical features. Non‐linear optical experiments showed that the investigated compounds were strong non‐linear absorbers in wide energy ranges. Indeed, their non‐linear absorption was augmented upon increasing the length of the oligothiophene bridge. In particular, the compound with the longest oligothiophene bridge not only showed strong two‐photon absorption (TPA) but also noteworthy three‐photon‐absorption behavior, with a cross‐section value of 4×10?78 cm6 s2 at 1450 nm. This characteristic was complemented by the strong excited‐state absorption (ESA) that was observed for compounds 3 and 4 . As a matter of fact, the overlap between the non‐linear absorption and ESA establishes compounds 3 and 4 as good candidates for optical‐power‐limiting applications.  相似文献   

11.
The complete set of 6332 classical isomers of the fullerene C68 as well as several non‐classical isomers is investigated by PM3, and the data for some of the more stable isomers are refined by the DFT‐based methods HCTH and B3LYP. C2:0112 possesses the lowest energy of all the neutral isomers and it prevails in a wide range of temperatures. Among the fullerene ions modeled, C682?, C684? and C686?, the isomers C682?(Cs:0064), C684?(C2v:0008), and C686?(D3:0009) respectively, are predicted to be the most stable. This reveals that the pentagon adjacency penalty rule (PAPR) does not necessarily apply to the charged fullerene cages. The vertical electron affinities of the neutral Cs:0064, C2v:0008, and D3:0009 isomers are 3.41, 3.29, and 3.10 eV, respectively, suggesting that they are good electron acceptors. The predicted complexation energy, that is, the adiabatic binding energy between the cage and encapsulated cluster, of Sc2C2@C68(C2v:0008) is ?6.95 eV, thus greatly releasing the strain of its parent fullerene (C2v:0008). Essentially, C68 fullerene isomers are charge‐stabilized. Thus, inducing charge facilitates the isolation of the different isomers. Further investigations show that the steric effect of the encaged cluster should also be an important factor to stabilize the C68 fullerenes effectively.  相似文献   

12.
Attempted preparation of a chelated CoII β‐silylamide resulted in the unprecedented disproportionation to Co0 and a spirocyclic cobalt(IV) bis(β‐silyldiamide): [Co[(NtBu)2SiMe2]2] ( 1 ). Compound 1 exhibited a room‐temperature magnetic moment of 1.8 B.M. and a solid‐state axial EPR spectrum diagnostic of a rare S= configuration for tetrahedral CoIV. Ab initio semicanonical coupled‐cluster calculations (DLPNO‐CCSD(T)) revealed the doublet state was clearly preferred (?27 kcal mol?1) over higher spin configurations only for the bulky tert‐butyl‐substituted analogue. Unlike other CoIV complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self‐limiting monolayer in preliminary atomic layer deposition (ALD) surface saturation experiments. The ease of synthesis and high stability make 1 an attractive starting point to investigate otherwise inaccessible CoIV intermediates and for synthesizing new materials.  相似文献   

13.
Herein we report the systematic exploration of the potential energy surfaces of a series of clusters with formula E5M7+ (E=C‐Pb and M=Li‐Cs). Fifteen of these combinations adopt a D5h three‐dimensional seven‐pointed star‐like structure in a singlet state, where M atoms interact electrostatically with the E5 ring. The determining factors in the relative preference of having the D5h structure over the most competitive isomer or vice‐versa are analyzed. These star‐shaped systems satisfy the 4n+2 Hückel's rule and exhibit a strong diatropic (σ and π) response to an external magnetic field.  相似文献   

14.
The anionic gold(I) complexes [1‐(Ph3PAu)‐closo‐1‐CB11H11]? ( 1 ), [1‐(Ph3PAu)‐closo‐1‐CB9H9]? ( 2 ), and [2‐(Ph3PAu)‐closo‐2‐CB9H9]? ( 3 ) with gold–carbon 2c–2e σ bonds have been prepared from [AuCl(PPh3)] and the respective carba‐closo‐borate dianion. The anions have been isolated as their Cs+ salts and the corresponding [Et4N]+ salts were obtained by salt metathesis reactions. The salt Cs‐ 3 isomerizes in the solid state and in solution at elevated temperatures to Cs‐ 2 with ΔHiso=(?75±5) kJ mol?1 (solid state) and ΔH=(118±10) kJ mol?1 (solution). The compounds were characterized by vibrational and multi‐NMR spectroscopies, mass spectrometry, elemental analysis, and differential scanning calorimetry. The crystal structures of [Et4N]‐ 1 , [Et4N]‐ 2 , and [Et4N]‐ 3 were determined. The bonding parameters, NMR chemical shifts, and the isomerization enthalpy of Cs‐ 3 to Cs‐ 2 are compared to theoretical data.  相似文献   

15.
Photocatalysis provides a cost effective method for both renewable energy synthesis and environmental purification. Photocatalytic activity is dominated by the material design strategy and synthesis methods. Here, for the first time, we report very mild and effective photo‐deposition procedures for the synthesis of novel Fe2O3–TiO2 nanocomposites. Their photocatalytic activities have been found to be dramatically enhanced for both contaminant decomposition and photoelectrochemical water splitting. When used to decompose a model contaminant herbicide, 2,4‐dichlorophenoxyacetic acid (2,4‐D), monitored by both UV/Vis and total organic carbon (TOC) analysis, 10 % Fe–TiO2–H2O displayed a remarkable enhancement of more than 200 % in the kinetics of complete mineralisation in comparison to the commercial material P25 TiO2 photocatalyst. Furthermore, the photocurrent is nearly double that of P25. The mechanism for this improvement in activity was determined using density functional theory (DFT) and photoluminescence. These approaches ultimately reveal that the photoelectron transfer is from TiO2 to Fe2O3. This favours O2 reduction which is the rate‐determining step in photocatalytic environmental purification. This in situ charge separation also allows for facile migration of holes from the valence band of TiO2 to the surface for the expected oxidation reactions, leading to higher photocurrent and better photocatalytic activity.  相似文献   

16.
A series of porphyrin‐containing polyimide (PI) photocatalysts were synthesized by a one‐step solvothermal method. Characterization results revealed that porphyrin was uniformly coupled into the PI framework through covalent bonding and the visible‐light absorption was greatly improved. The photodegradation activity of porphyrin‐containing PIs for methyl orange (MO) under visible light was enhanced significantly, with the highest pseudo‐first‐order rate constant 35 times higher than that of neat porphyrin and 10 times higher than that of porphyrin‐free PI. The enhancement is mainly attributed to an increased light harvesting accompanied by a varied HOMO level, which was clarified by control experiments, characterizations and theoretical calculations. This work provides an insight into multiple effects of dye molecules in dye‐containing heterogeneous photocatalysts.  相似文献   

17.
1,1,1‐Trimethylhydrazinium iodide ([(CH3)3N? NH2]I, 1 ) was reacted with a silver salt to form the corresponding nitrate ([(CH3)3N? NH2][NO3], 2 ), perchlorate ([(CH3)3N? NH2][ClO4], 3 ), azide ([(CH3)3N? NH2][N3], 4 ), 5‐amino‐1H‐tetrazolate ([(CH3)3N? NH2][H2N? CN4], 5 ), and sulfate ([(CH3)3N? NH2]2[SO4]?2H2O, 6 ?2H2O) salts. The metathesis reaction of compound 6 ?2H2O with barium salts led to the formation of the corresponding picrate ([(CH3)3N? NH2][(NO2)3Ph ‐ O], 7 ), dinitramide ([(CH3)3N? NH2][N(NO2)2], 8 ), 5‐nitrotetrazolate ([(CH3)3N? NH2][O2N? CN4], 9 ), and nitroformiate ([(CH3)3N? NH2][C(NO2)3], 10 ) salts. Compounds 1 – 10 were characterized by elemental analysis, mass spectrometry, infrared/Raman spectroscopy, and multinuclear NMR spectroscopy (1H, 13C, and 15N). Additionally, compounds 1 , 6 , and 7 were also characterized by low‐temperature X‐ray diffraction techniques (XRD). Ba(NH4)(NT)3 (NT=5‐nitrotetrazole anion) was accidentally obtained during the synthesis of the 5‐nitrotetrazole salt 9 and was also characterized by low‐temperature XRD. Furthermore, the structure of the [(CH3)3N? NH2]+ cation was optimized using the B3LYP method and used to calculate its vibrational frequencies, NBO charges, and electronic energy. Differential scanning calorimetry (DSC) was used to assess the thermal stabilities of salts 2 – 5 and 7 – 10 , and the sensitivities of the materials towards classical stimuli were estimated by submitting the compounds to standard (BAM) tests. Lastly, we computed the performance parameters (detonation pressures/velocities and specific impulses) and the decomposition gases of compounds 2 – 5 and 7 – 10 and those of their oxygen‐balanced mixtures with an oxidizer.  相似文献   

18.
The syntheses of [3]‐ and [4]cyclo‐9,9‐dimethyl‐2,7‐fluorenes ([3] and [4]CFRs), cyclic trimer, and tetramers of 9,9‐dimethyl‐2,7‐fluorene (FR), respectively, were achieved by the platinum‐mediated assembly of FR units and subsequent reductive elimination of platinum. A triangle‐shaped tris‐platinum complex and a square‐shaped tetra‐platinum complex were obtained by changing the platinum ligand. The structure of the triangle complex was unambiguously determined by X‐ray crystallographic analysis. Reductive elimination of each complex gave [3] and [4]CFRs. Two rotamers of [3]CFR were sufficiently stable at room temperature and were separated by chromatography. The physical properties of the CFRs were also investigated theoretically and experimentally.  相似文献   

19.
20.
Do the hydrogen shuffle! DFT calculations and experiments reveal low‐barrier multistep pathways for hydrogen‐atom transfer from organic radicals to [CoII(por)] . to form [Co(H)(por)], and for the radical pathway leading to net olefin insertion into the Co? H bond of [Co(H)(por)] (see scheme). The results suggest that hydrogen‐atom‐transfer pathways could be important in numerous addition reactions of M? H complexes with unsaturated substrates.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号