首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New 2′-deoxyadenosine and adenosoine modifications: 8-[(2-dimethylaminoethyl)amino]-2′-deoxyadenosine and 8-[(2-dimethylaminoethyl)amino]adenosine were prepared and their reactivity towards cyclic oxonium adducts of closo-dodecaborate and cobalt-bis-dicarbollide was studied. The cleavage reactions of clusters oxonium rings by N,N-dimethylanio group of modified nucleosides led to the first [B12H12]2− and new [Co(C2B9H11)2] conjugates with adenosine and 2′-deoxyadenosine respectively. The proposed methodology provides a convenient route for the synthesis of libraries of boron cluster modified adenosine and 2′-deoxyadenosine derivatives for biological screening.  相似文献   

2.
The title compounds, rac‐(1′R,2R)‐tert‐butyl 2‐(1′‐hydroxyethyl)‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C17H20N2O6, (I), rac‐(1′S,2R)‐tert‐butyl 2‐[1′‐hydroxy‐3′‐(methoxycarbonyl)propyl]‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C20H24N2O8, (II), and rac‐(1′S,2R)‐tert‐butyl 2‐(4′‐bromo‐1′‐hydroxybutyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C13H20BrNO4, (III), are 5‐hydroxyalkyl derivatives of tert‐butyl 2‐oxo‐2,5‐dihydropyrrole‐1‐carboxylate. In all three compounds, the tert‐butoxycarbonyl (Boc) unit is orientated in the same manner with respect to the mean plane through the 2‐oxo‐2,5‐dihydro‐1H‐pyrrole ring. The hydroxyl substituent at one of the newly created chiral centres, which have relative R,R stereochemistry, is trans with respect to the oxo group of the pyrrole ring in (I), synthesized using acetaldehyde. When a larger aldehyde was used, as in compounds (II) and (III), the hydroxyl substituent was found to be cis with respect to the oxo group of the pyrrole ring. Here, the relative stereochemistry of the newly created chiral centres is R,S. In compound (I), O—H...O hydrogen bonding leads to an interesting hexagonal arrangement of symmetry‐related molecules. In (II) and (III), the hydroxyl groups are involved in bifurcated O—H...O hydrogen bonds, and centrosymmetric hydrogen‐bonded dimers are formed. The Mukaiyama crossed‐aldol‐type reaction was successful when using the 2‐nitrophenyl‐substituted hydroxypyrrole, or the unsubstituted hydroxypyrrole, and boron trifluoride diethyl ether as catalyst. The synthetic procedure leads to a syn configuration of the two newly created chiral centres in all three compounds.  相似文献   

3.
《Mendeleev Communications》2022,32(3):354-356
The novel conjugates of cholesterol with cobalt – bis(dicarbollide) were synthesized by the ring-opening reactions of the cyclic oxonium derivatives of [3,3′-Co(C2B9H11)2] with the OH group of cholesterol 2-hydroxyethyl ether. The compounds obtained were tested for toxicity to glioblastoma U-87 MG cells and human embryo fibroblasts FECH-15 cells  相似文献   

4.
A class of polymeric compounds containing boron–boron triple bonds stabilized by N‐heterocyclic biscarbenes is proposed. Since a triply bonded B2 is related to its third excited state, the predicted macromolecule would be composed by several units of an electronically excited first‐row homonuclear dimer. Moreover, it is shown that the replacement of biscarbene with N2 or CO as spacers could change the bonding profile of the boron–boron units to a cumulene‐like structure. Based on these results, different types of diboryne polymers are proposed, which could lead to an unprecedented set of boron materials with distinct physical properties. The novel diboryne macromolecules could be synthesized by the reaction of Janus‐type biscarbenes with tetrabromodiborane, B2Br4, and sodium naphthalenide, [Na(C10H8)], similarly to Braunschweig’s work on the room temperature stable boron–boron triple bond compounds (Science, 2012 , 336, 1420).  相似文献   

5.
The preparation and structures of three diborane(4) compounds are described. The compound B2(3,4‐S2C4H2‐1‐S)2 [2,2′‐bi(1,3,5,2‐tri­thia­borapentalene), C8H4B2S6] is planar and lies at a crystallographic inversion centre. The amine adducts [B2(C3S5)2(NHMe2)2] [2,2′‐bis­(di­methyl­amino)‐2,2′‐bi(1,3,4,6,2‐tetra­thia­borapentalene‐5‐thione), C10H14B2N2S10] and [B2(1,2‐S2C2H4)2(NHMe2)2]·0.33CH2Cl2 [1,2‐bis­(di‐methylamino)‐1,1:2,2‐bis(dimethylenedithioxy)diborane(4) di­chloro­methane solvate, C8H22B2N2S4·0.33CH2Cl2] contain di­methyl­amine ligands bound to each boron in an anti conformation about the B—B bond, with tetrahedral geometry at the B atoms. The crystal structures display a number of S?S interactions, which appear to dictate the packing arrangements.  相似文献   

6.
The H‐shaped copolymers, [poly(L ‐lactide)]2polystyrene [poly(L ‐lactide)]2, [(PLLA)2PSt(PLLA)2] have been synthesized by combination of atom transfer radical polymerization (ATRP) with cationic ring‐opening polymerization (CROP). The first step of the synthesis is ATRP of St using α,α′‐dibromo‐p‐xylene/CuBr/2,2′‐bipyridine as initiating system, and then the PSt with two bromine groups at both chain ends (Br–PSt–Br) were transformed to four terminal hydroxyl groups via the reaction of Br–PSt–Br with diethanolamine in N,N‐dimethylformamide. The H‐shaped copolymers were produced by CROP of LLA, using PSt with four terminal hydroxyl groups as macroinitiator and Sn(Oct)2 as catalyst. The copolymers obtained were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2794–2801, 2006  相似文献   

7.
A series of new boron‐bridged [1]ferrocenophanes ([1]FCPs) was prepared by salt‐metathesis reactions between enantiomerically pure dilithioferrocenes and amino(dichloro)boranes (Et2NBCl2, iPr2NBCl2, or tBu(Me3Si)NBCl2). The dilithioferrocenes were prepared in situ by lithium–bromine exchange from the respective planar‐chiral dibromides (Sp,Sp)‐[1‐Br‐2‐(HR2C)H3C5]2Fe (R=Me or Et). In most of the cases, mixtures of the targeted [1]FCPs 4 and the unwanted 1,1′‐bis(boryl)ferrocenes 5 were formed. The product ratio depends on the bulkiness of the amino group, the speed of addition of the amino(dichloro)borane, the alkyl group on Cp rings, and in particular on the reaction temperature. The formation of strained [1]FCPs is strongly favored by increased reaction temperatures. Secondly, CHEt2 groups at Cp rings favored the formation of the targeted [1]FCPs stronger than CHMe2 groups. These discoveries open up new possibilities to further suppress the formation of unwanted byproducts by a careful choice of the reaction temperature and through tailoring the bulkiness of CHR2 groups on ferrocene. Thermal ring‐opening polymerizations of selected boron‐bridged [1]FCPs gave metallopolymers with a Mw of 10 kDa (GPC).  相似文献   

8.
N,N′‐Bis(3‐methyl­phenyl)‐N,N′‐di­phenyl‐1,1′‐bi­phenyl‐4,4′‐di­amine (TPD), C38H32N2, crystallizes in the monoclinic space group P21 with a pseudo‐orthogonal lattice, rather than the previously reported orthorhombic space group P212121 [Kennedy, Smith, Tackley, David, Shankland, Brown & Teat (2002). J. Mater. Chem. 12 , 168–172]. The asymmetric unit consists of two independent mol­ecules, A and B, which are arranged along the [100] direction to form vertical layers of alternately stacked A and B mol­ecules. Molecule A shows a great deal of rotational movement in the four terminal aryl rings, resulting in two disordered tolyl groups split over two sites, while mol­ecule B exhibits an almost cis configuration of the two terminal tolyl groups with respect to these ring planes.  相似文献   

9.
The newly discovered borospherenes B40?/0 and B39? mark the onset of a new class of boron nanostructures. Based on extensive first‐principles calculations, we introduce herein two new chiral members to the borospherene family: the cage‐like C1 B41+ ( 1 ) and C2 B422+ ( 2 ), both of which are the global minima of the systems with degenerate enantiomers. These chiral borospherene cations are composed of twelve interwoven boron double chains with six hexagonal and heptagonal faces and may be viewed as the cuborenes analogous to cubane (C8H8). Chemical bonding analyses show that there exists a three‐center two‐electron σ bond on each B3 triangle and twelve multicenter two‐electron π bonds over the σ skeleton. Molecular dynamics simulations indicate that C1 B41+ ( 1 ) fluctuates above 300 K, whereas C2 B422+ ( 2 ) remains dynamically stable. The infrared and Raman spectra of these borospherene cations are predicted to facilitate their experimental characterizations.  相似文献   

10.
In the 1H NMR spectra of the 1‐vinylpyrroles with amino‐ and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one‐bond 1J(Cβ,HB) coupling constant is surprisingly greater than the 1J(Cβ,HA) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π‐system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C–HB???N hydrogen bonding in the s‐cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C–HB???S hydrogen bonding in the s‐cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C–H???N and C–H???S hydrogen bonding. Therefore, an unusual high‐frequency shift of the HB signal and the increase in the 1J(Cβ,HB) coupling constant can be explained by the effects of hydrogen bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Non‐covalent interactions involving multicenter multielectron skeletons such as boron clusters are rare. Now, a non‐covalent interaction, the nido‐cage???π bond, is discovered based on the boron cluster C2B9H12? and an aromatic π system. The X‐ray diffraction studies indicate that the nido‐cage???π bonding presents parallel‐displaced or T‐shaped geometries. The contacting distance between cage and π ring varies with the type and the substituent of the aromatic ring. Theoretical calculations reveal that this nido‐cage???π bond shares a similar nature to the conventional anion???π or π???π bonds found in classical aromatic ring systems. This nido‐cage???π interaction induces variable photophysical properties such as aggregation‐induced emission and aggregation‐caused quenching in one molecule. This work offers an overall understanding towards the boron cluster‐based non‐covalent bond and opens a door to investigate its properties.  相似文献   

12.
Propagation in the cationic ring‐opening polymerization of cyclic ethers involves nucleophilic attack of oxygen atoms from the monomer molecules on the cationic growing species (oxonium ions). Such a mechanism is known as the active chain‐end mechanism. If hydroxyl groups containing compounds are present in the system, oxygen atoms of HO? groups may compete with cyclic ether oxygen atoms of monomer molecules in reaction with oxonium ions. At the proper conditions, this reaction may dominate, and propagation may proceed by the activated monomer mechanism, that is, by subsequent addition of protonated monomer molecules to HO? terminated macromolecules. Both mechanisms may contribute to the propagation in the cationic polymerization of monomers containing both functions (i.e., cyclic ether group and hydroxyl groups) within the same molecule. In this article, the mechanism of polymerization of three‐ and four‐membered cyclic ethers containing hydroxymethyl substituents is discussed in terms of competition between two possible mechanisms of propagation that governs the structure of the products—branched polyethers containing multiple terminal hydroxymethyl groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 457–468, 2003  相似文献   

13.
Radical cations derived from the ethers ROCH2CH2OR′ (R, R′ = H, CH3, C25) were studied, since β-distonic oxonium ions are often prepared from ionized ethers of glycol. The first step in the fragmentation is a 1,5-transfer of an α-hydrogen to oxygen of a terminal alkoxy group leading to a δ-distonic oxonium ion. This step is thermo-neutral and reversible in the ROCH2CH2OH radical cations and exothermic and irreversible in the dialkyl ether radical cations. Depending on R and R,′ these δ-distonic oxonium ions fragment by three reactions: the loss of an alcohol or a water molecule, the formation of a β-distonic oxonium ion ˙CH2CH2O(H)+R and a 1,4-H migration between carbon atoms. Competition between these processes is discussed.  相似文献   

14.
The six‐membered B2H4 ring of the title compound, C36H30B2N8, adopts a slightly distorted boat conformation, with the terminal B substituents in a trans orientation. One 3‐­phenyl­pyrazolyl group is in an equatorial position, whereas the second is in an axial position with respect to the plane defined by the B atoms.  相似文献   

15.
A set of heterogenized olefin‐metathesis catalysts, which consisted of Ru complexes with the H2ITap ligand (1,3‐bis(2′,6′‐dimethyl‐4′dimethyl aminophenyl)‐4,5‐dihydroimidazol‐2‐ylidene) that had been adsorbed onto a silica support, has been prepared. These complexes showed strong binding to the solid support without the need for tethering groups on the complex or functionalized silica. The catalysts were tested in the ring‐opening–ring‐closing‐metathesis (RO‐RCM) of cyclooctene (COE) and the self‐metathesis of methyl oleate under continuous‐flow conditions. The best complexes showed a TON>4000, which surpasses the previously reported materials that were either based on the Grubbs–Hoveyda II complex on silica or on the classical heterogeneous Re2O7/B2O3 catalyst.  相似文献   

16.
Many of the fundamental questions regarding the solid‐state chemistry of boron are still unsolved, more than 200 years after its discovery. Recently, theoretical work on the existence and stability of known and new modifications of the element combined with high‐pressure and high‐temperature experiments have revealed new aspects. A lot has also happened over the last few years in the field of reactions between boron and main group elements. Binary compounds such as B6O, MgB2, LiB1?x, Na3B20, and CaB6 have caused much excitement, but the electron‐precise, colorless boride carbides Li2B12C2, LiB13C2, and MgB12C2 as well as the graphite analogue BeB2C2 also deserve special attention. Physical properties such as hardness, superconductivity, neutron scattering length, and thermoelectricity have also made boron‐rich compounds attractive to materials research and for applications. The greatest challenges to boron chemistry, however, are still the synthesis of monophasic products in macroscopic quantities and in the form of single crystals, the unequivocal identification and determination of crystal structures, and a thorough understanding of their electronic situation. Linked polyhedra are the dominating structural elements of the boron‐rich compounds of the main group elements. In many cases, their structures can be derived from those that have been assigned to modifications of the element. Again, even these require a critical revision and discussion.  相似文献   

17.
The title compounds, C22H22N4 and C24H26N4O2 [alternative names: 2,6‐dibenzyl‐2,3,6,7‐tetrahydro‐1H,5H‐dipyrrolo[3,4‐b; 3′,4′‐e]pyrazine and 2,6‐bis(4‐methoxybenzyl)‐2,3,6,7‐tetrahydro‐1H,5H‐dipyrolo[3,4‐b;3′,4′‐e]pyrazine], two 1,2,3,5,6,7‐hexa­hydro‐2,4,6,8‐tetra­aza‐s‐indacene derivatives, are both centrosymmetric and have similar S‐shaped structures. In the former, there are two independent mol­ecules (A and B), both of which possess Ci symmetry. These two mol­ecules are arranged such that the benzene ring substituent of mol­ecule B is directed towards the plane of the benzene ring substituent of mol­ecule A, with a dihedral angle of 55.4 (2)° between their planes. The shortest C—H⋯C distance is, however, only 3.21 (1) Å. In both compounds, the benzene ring substituents are almost perpendicular to the plane of the central pyrazine ring, and the pyrrolidine rings have perfect envelope conformations. In the crystal structures of both compounds, the mol­ecules pack in a herring‐bone arrangement.  相似文献   

18.
A series of new compounds based on aromatically 2,5‐disubstituted 1,3,4‐oxadiazoles without flexible chains, formulated as p‐R–C6H4–(OC2N2)–(p‐C6H4)2–R′ with (i) R = CH3O, R′ = CH3O, CH3S, F, H (Ia–Id), (ii) R = CH3S, R′ = CH3O, CH3S, F, H (IIa–IId) and (iii) R = F, R′ = CH3O, CH3S, F, H (IIIa–IIId) (p‐C6H4 and OC2N2 represent a p‐phenylene spacer and a 1,3,4‐oxadiazole ring, respectively), were synthesised and characterised by 1H and 13C NMR, MS and HRMS techniques. Mesomorphic properties were investigated using differential scanning calorimetry and polarizing optical microscopy. All of the target compounds (except Id, IId, IIIc and IIId) exhibited an enantiotropic nematic mesophase with high melting temperatures. The liquid crystalline properties of these compounds were influenced greatly by polarity, steric factors and positions of the terminal groups. The effect of the terminal groups on the liquid crystal properties is discussed.  相似文献   

19.
A visible‐light‐mediated in situ generation of a boron‐centered carboranyl radical (o‐C2B10H11 . ) has been described. With eosin Y as a photoredox catalyst, 3‐diazonium‐o‐carborane tetrafluoroborate [3‐N2o‐C2B10H11][BF4] was converted into the corresponding boron‐centered carboranyl radical intermediate, which can undergo efficient electrophilic substitution reaction with a wide range of (hetero)arenes. This general and simple procedure provides a metal‐free alternative for the synthesis of 3‐(hetero)arylated‐o‐carboranes.  相似文献   

20.
Three water‐soluble tetracationic quadrupolar chromophores comprising two three‐coordinate boron π‐acceptor groups bridged by thiophene‐containing moieties were synthesised for biological imaging applications. Compound 3 containing the bulkier 5‐(3,5‐Me2C6H2)‐2,2′‐(C4H2S)2‐5′‐(3,5‐Me2C6H2) bridge is stable over a long period of time, exhibits a high fluorescence quantum yield and strong one‐ and two‐photon absorption (TPA), and has a TPA cross section of 268 GM at 800 nm in water. Confocal laser scanning fluorescence microscopy studies in live cells indicated localisation of the chromophore at the mitochondria; moreover, cytotoxicity measurements proved biocompatibility. Thus, chromophore 3 has excellent potential for one‐ and two‐photon‐excited fluorescence imaging of mitochondrial function in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号