首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
碳纳米管因其独特的电子结构和性能引起了研究者们广泛的兴趣,尤其是它有序的纳米级管腔结构,可以为催化剂和催化反应提供一种独特的一维限域环境.碳纳米管的限域效应主要由于其管腔几何和电子结构可以使反应物发生富集、对金属纳米颗粒的尺寸限制以及对电子结构的调变作用.一系列研究表明,碳纳米管的限域效应可以对催化剂的活性进行调变,但是对产物选择性的影响方面研究得较少,特别是管径小于4 nm的碳纳米管的限域体系.因此,本文以肉桂醛选择性加氢反应为探针,研究限域效应对产物选择性的影响规律.采用管径为1–3 nm的碳纳米管,基于气相填充的方法将Ru纳米团簇分散于碳纳米管的管腔中,得到碳纳米管限域的Ru催化剂(Ru@CNT);采用浸渍法制备了碳纳米管管外壁负载的催化剂(Ru/CNT)来进行对比.肉桂醛含有共轭的C=C和C=O键,由于C=C键能低于C=O,前者更易发生加氢反应.结果表明,分散在碳纳米管外壁的Ru催化剂可以催化肉桂醛中的C=C加氢,得到氢化肉桂醛(HCAL);而Ru@CNT催化剂不仅可以催化C=C加氢得到氢化肉桂醛HCAL,还可以催化C=O键加氢得到肉桂醇,以及氢化肉桂醇. 通过高分辨透射电镜、拉曼、程序升温还原、程序升温脱附对催化剂进行了表征.发现碳纳米管限域的纳米团簇金属颗粒的粒径大约为1–2 nm,与管外负载的金属颗粒相近,但是Ru@CNT催化剂上仍有部分金属纳米团簇分布在管外壁,这可能是Ru@CNT催化剂上有C=C键加氢产物的一个原因.碳纳米管独特的限域效应促进了Ru物种的还原,在H2气氛下管内Ru物种的还原温度比管外低20oC.金属与碳纳米管的内、外壁之间的电子相互作用,纳米管腔的空间限制作用及管腔富集作用可能是产物分布产生差异的原因.  相似文献   

2.
Carbon nanotubes (CNTs) have been widely used in a variety of applications because of their unique structure and excellent mechanical and electrical properties. Additionally, silver (Ag) nanoparticles exhibit broad-spectrum biocidal activity toward many different bacteria, fungi, and viruses. In this study, we prepared Ag-coated CNT hybrid nanoparticles (Ag/CNTs) using aerosol nebulization and thermal evaporation/condensation processes and tested their usefulness for antimicrobial air filtration. Droplets were generated from a CNT suspension using a six-jet collison nebulizer, passed through a diffusion dryer to remove moisture, and entered a thermal tube furnace where silver nanoparticles were generated by thermal evaporation/condensation at ~980 °C in a nitrogen atmosphere. The CNT and Ag nanoparticle aerosols mixed together and attached to each other, forming Ag/CNTs. For physicochemical characterization, the Ag/CNTs were introduced into a scanning mobility particle sizer (SMPS) for size distribution measurements and were sampled by the nanoparticle sampler for morphological and elemental analyses. For antimicrobial air filtration applications, the airborne Ag/CNT particles generated were deposited continuously onto an air filter medium. Physical characteristics (fiber morphology, pressure drop, and filtration efficiency) and biological characteristics (antimicrobial tests against Staphylococcus epidermidis and Escherichia coli bioaerosols) were evaluated. Real-time SMPS and transmission electron microscopy (TEM) data showed that Ag nanoparticles that were <20 nm in diameter were homogeneously dispersed and adhered strongly to the CNT surfaces. Because of the attachment of Ag nanoparticles onto the CNT surfaces, the total particle surface area concentration measured by a nanoparticle surface area monitor (NSAM) was lower than the summation of each Ag nanoparticle and CNT generated. When Ag/CNTs were deposited on the surface of an air filter medium, the antimicrobial activity against test bacterial bioaerosols was enhanced, compared with the deposition of CNTs or Ag nanoparticles alone, whereas the filter pressure drop and bioaerosol filtration efficiency were similar to those of CNT deposition only. At a residence time of 2 h, the relative microbial viabilities of gram-positive S. epidermidis were ~32, 13, 5, and 0.9% on the control, CNT-, Ag nanoparticle-, and Ag/CNT-deposited filters, respectively, and those of gram-negative E. coli were 13, 2.1, 0.4, and 0.1% on the control, CNTs, Ag nanoparticles, and Ag/CNTs, respectively. These Ag/CNT hybrid nanoparticles may be useful for applications in biomedical devices and antibacterial control systems.  相似文献   

3.
Following our previous findings that confinement within carbon nanotubes (CNTs) can modify the redox properties of encapsulated iron oxides, we demonstrate here how this can affect the catalytic reactivity of iron catalysts in Fischer-Tropsch synthesis (FTS). The investigation, using in situ XRD under conditions close to the reaction conditions, reveals that the distribution of iron carbide and oxide phases is modulated in the CNT-confined system. The iron species encapsulated inside CNTs prefer to exist in a more reduced state, tending to form more iron carbides under the reaction conditions, which have been recognized to be essential to obtain high FTS activity. The relative ratio of the integral XRD peaks of iron carbide (Fe(x)C(y)) to oxide (FeO) is about 4.7 for the encapsulated iron catalyst in comparison to 2.4 for the iron catalyst dispersed on the outer walls of CNTs under the same conditions. This causes a remarkable modification of the catalytic performance. The yield of C5+ hydrocarbons over the encapsulated iron catalyst is twice that over iron catalyst outside CNTs and more than 6 times that over activated-carbon-supported iron catalyst. The catalytic activity enhancement is attributed to the effect of confinement of the iron catalyst within the CNT channels. As demonstrated by temperature-programmed reduction in H2 and in CO atmospheres, the reducibility of the iron species is significantly improved when they are confined. The ability to modify the redox properties via confinement in CNTs is expected to be of significance for many catalytic reactions, which are highly dependent on the redox state of the active components. Furthermore, diffusion and aggregation of the iron species through the reduction and reaction have been observed, but these are retarded inside CNTs due to the spatial restriction of the channels.  相似文献   

4.
We report the tuning of the redox properties of iron and iron oxide nanoparticles by encapsulation within carbon nanotubes (CNTs) with varying inner diameters. Raman spectroscopy was employed to investigate the interaction of the encapsulated nanoparticles with the CNTs. A red shift of the Fe-O mode is observed in the nanoparticles deposited on the outer CNT surfaces with respect to bulk Fe2O3. However, this mode is found to be stepwise blue-shifted with decreasing inner diameter in the CNT-encapsulated Fe2O3 nanoparticles, suggesting an enhanced interaction of Fe2O3 with the inner CNT surface as its curvature increases. The autoreduction of the encapsulated Fe2O3 is significantly facilitated inside CNTs with respect to the outside nanoparticles. Interestingly, it becomes more facile with decreasing CNT channel diameter as evidenced by temperature programmed reaction, in situ XRD, and Raman spectroscopy. The oxidation of encapsulated metallic Fe nanoparticles on the other hand is retarded in comparison to that of the outside Fe particles as shown by in situ XRD and gravimetrical measurements with an online microbalance. We attribute this tunable redox behavior of transition metal nanoparticles inside CNTs to a particular electronic interaction of the encapsulates with the interior CNT surface, which stabilizes the metallic state of Fe.  相似文献   

5.
Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO(2) in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO(2) from the UV to the visible-light region. The CNT-confined TiO(2) exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO(2) induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis.  相似文献   

6.
Synthesis of low‐dimensional carbon nanomaterials such as carbon nanotubes (CNTs) is a key driver for achieving advances in energy storage, computing, and multifunctional composites, among other applications. Here, we report high‐yield thermal chemical vapor deposition (CVD) synthesis of CNTs catalyzed by reagent‐grade common sodium‐containing compounds, including NaCl, NaHCO3, Na2CO3, and NaOH, found in table salt, baking soda, and detergents, respectively. Coupled with an oxidative dehydrogenation reaction to crack acetylene at reduced temperatures, Na‐based nanoparticles have been observed to catalyze CNT growth at temperatures below 400 °C. Ex situ and in situ transmission electron microscopy (TEM) reveal unique CNT morphologies and growth characteristics, including a vaporizing Na catalyst phenomenon that we leverage to create CNTs without residual catalyst particles for applications that require metal‐free CNTs. Na is shown to synthesize CNTs on numerous substrates, and as the first alkali group metal catalyst demonstrated for CNT growth, holds great promise for expanding the understanding of nanocarbon synthesis.  相似文献   

7.
Carbon nanotubes (CNTs) were non‐covalently functionalized with chitosan (Chit) and then employed as the support for PtRu nanoparticles. The functionalization was carried out at room temperature without the use of corrosive acids, thereby preserving the integrity and the electronic conductivity of the CNTs. Transmission electron microscopy reveals that PtRu nanoparticles were highly dispersed on the surface of Chit‐functionalized CNTs (CNT‐Chit) with small particle‐size. Cyclic voltammetry studies indicated that the PtRu nanoparticle/CNT‐Chit nanohybrids have a higher electrochemical surface area, electrocatalytic performance, and stability towards methanol oxidation compared to PtRu nanoparticles supported on the pristine CNTs.  相似文献   

8.
Facile autoreduction of iron oxide encapsulated within carbon nanotubes has been observed at a temperature 200 degrees C lower than those on the outer surface. This opens a new route to tune the state of confined nanoparticles of d-band metals by the confinement of CNTs.  相似文献   

9.
The mutual effects of two crucial features of carbon nanotubes (CNTs) (surface and confinement) on the temperature-dependent water diffusion are studied through molecular dynamics simulations. A two-stage diffusion mechanism is detected in the CNTs of diameter smaller than 12.2 ?, which becomes obscure as the temperature increases. This peculiar phenomenon can be ascribed to the cooperation of the small confinement and the periodic surface. The diffusion coefficient of the confined water exhibits a nonmonotonic dependence on the confinement size and an unexpected increase inside the large CNTs (compared to that of bulk water). These anomalous behaviors can be attributed to the competition of the smooth surface and the small confinement. Considering the mutual effects, an empirical formula is proposed on the basis of two groups of numerical examples, whose results indicate that the confinement effect will dominate over the surface effect until the CNT diameter increases up to ~16 ?, whereas thereafter the surface effect becomes dominant and finally both of them vanish gradually.  相似文献   

10.
Carbon nanotubes (CNTs) have been shown to modify some properties of nanomaterials and to modify chemical reactions confined inside their channels, which are formed by curved graphene layers. Here we studied ammonia synthesis over Ru as a probe reaction to understand the effect of the electron structure of CNTs on the confined metal particles and their catalytic activity. The catalyst with Ru nanoparticles dispersed almost exclusively on the exterior nanotube surface exhibits a higher activity than the CNT‐confined Ru, although both have a similar metal particle size. Characterization with TEM, N2 physisorption, H2 chemisorption, temperature‐programmed reduction, CO adsorption microcalorimetry, and first‐principles calculations suggests that the outside Ru exhibits a higher electron density than the inside Ru. As a result, the dissociative adsorption of N2, which is an electrophilic process and the rate‐determining step of ammonia synthesis, is more facile over the outside Ru than that over the inside one.  相似文献   

11.
We report a method to prepare composites based on carbon nanotubes (CNTs) and CeO2 nanoparticles (NPs). The CeO2 NPs were attached to CNTs by hydrothermal treatment of Ce(OH)4/CNT mixture in NaOH solution at 180 °C. It was found that larger CeO2 NPs were formed in the presence of CNTs. Grain size of CeO2 NPs in the composites can be reduced when NaNO3 was added in the hydrothermal process. Electrochemical characterizations have shown that the composites possess a specific capacity between those of CNTs and CNTs mechanically mixed with CeO2. These CeO2/CNT composites could serve as promising anode materials for Li-ion batteries.  相似文献   

12.
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.  相似文献   

13.
A series of waterborne polyurethane (WBPU)/multiwalled carbon nanotube (CNT) and WBPU/nitric acid treated multiwalled carbon nanotube (A‐CNT) composites were prepared by in situ polymerization in an aqueous medium. The optimum nitric acid treatment time was about 0.5 h. The effects of the CNT and A‐CNT contents on the dynamic mechanical thermal properties, mechanical properties, hardness, electrical conductivity, and antistatic properties of the two kinds of composites were compared. The tensile strength and modulus, the glass‐transition temperatures of the soft and hard segments (Tgs and Tgh, respectively), and ΔTg (TghTgs) of WBPU for both composites increased with increasing CNT and A‐CNT contents. However, these properties of the WBPU/A‐CNT composites were higher than those of the WBPU/CNT composites with the same CNT content. The electrical conductivities of the WBPU/CNT1.5 and WBPU/A‐CNT1.5 composites containing 1.5 wt % CNTs (8.0 × 10−4 and 1.1 × 10−3 S/cm) were nearly 8 and 9 orders of magnitude higher than that of WBPU (2.5 × 10−12 S/cm), respectively. The half‐life of the electrostatic charge (τ1/2) values of the WBPU/CNT0.1 and WBPU/A‐CNT0.1 composites containing 0.1 wt % CNTs were below 10 s, and the composites had good antistatic properties. From these results, A‐CNT was found to be a better reinforcer than CNT. These results suggest that WBPU/A‐CNT composites prepared by in situ polymerization have high potential as new materials for waterborne coatings with good physical, antistatic, and conductive properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3973–3985, 2005  相似文献   

14.
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.  相似文献   

15.
In order to achieve dramatic improvements in the performance of rubber materials, the development of carbon nanotube (CNT)‐reinforced rubber composites was attempted. The CNT/natural rubber (NR) nanocomposite was prepared through solvent mixing on the basis of pretreatment of CNTs. Thermal properties, vulcanization characteristics, and physical and mechanical properties of the CNT/NR nanocomposites were characterized in contrast to the carbon black (CB)/NR composite. Through the addition of the CNTs treated using acid bath followed by ball milling with HRH (hydrated silica, resorcinol, and hexamethylene tetramine) bonding systems, the crystallization melting peak in differential scanning calorimetry (DSC) curves of NR weakened and the curing rate of NR slightly decreased. Meanwhile, the over‐curing reversion of CNT/NR nanocomposites was alleviated. The dispersion of the treated CNTs in the rubber matrix and interfacial bonding between them were rather good. The mechanical properties of the CNT‐reinforced NR showed a considerable increase compared to the neat NR and traditional CB/NR composite. At the same time, the CNT/NR nanocomposites exhibited better rebound resilience and dynamic compression properties. The storage modulus of the CNT/NR nanocomposites greatly exceeds that of neat NR and CB/NR composites under all temperature regions. The thermal stability of NR was also obviously improved with the addition of the treated CNTs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Carbon nanotubes (CNTs) and reduced graphene oxide (RGO) were successfully assembled by chemical reaction to obtain CNT‐d‐RGO particles. Then, a home‐made dynamic impregnating device was used to prepare hybrid CNT‐d‐RGO/polyethylene glycol (PEG). Next, the different modifiers, including CNTs, GO, CNT‐d‐RGO, PEG, and CNT‐d‐RGO/PEG, were, respectively, added into poly‐(lactic acid) (PLA) matrix via melt‐compounding. The dispersed morphology for these different modifiers within the PLA matrix was confirmed by SEM and TEM observations. Especially, compared with the identical weight ratio of CNT‐d‐RGO, the hybrid CNT‐d‐RGO/PEG within the PLA matrix exhibited an excellent exfoliated and interconnected networks morphology. Moreover, compared with pure PLA, not only the crystallinity of all PLA‐based composites notably improved, but half‐crystallization time was also shortened. Furthermore, despite the addition of different modifiers, the crystal form of PLA‐based composites remained unchanged. Noticeably, compared with those of pure PLA, the tensile stress, strain, and modulus of PLA composite added with CNT‐d‐RGO/PEG increased by 29.4%, 4.1%, and 56.1%, respectively, and the V‐notch impact strength slightly improved. In addition, compared with pure PLA, volume resistivity of the PLA composite added with 1 wt% CNT‐d‐RGO/PEG decreased by 93.1%, and its volume conductivity increased by five orders of magnitude.  相似文献   

17.
We apply a suite of analytical tools to characterize materials created in the production of microfabricated thin layer chromatography plates. Techniques used include X‐ray photoelectron spectroscopy (XPS), valence band spectroscopy, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) in both positive and negative ion modes, Rutherford backscattering spectroscopy (RBS), and helium ion microscopy. Materials characterized include: the Si(100) substrate with native oxide: Si/SiO2, alumina (35 nm) deposited as a diffusion barrier on the Si/SiO2: Si/SiO2/Al2O3, iron (6 nm) thermally evaporated on the Al2O3: Si/SiO2/Al2O3/Fe, the iron film annealed in H2 to make Fe catalyst nanoparticles: Si/SiO2/Al2O3/Fe(NP), and carbon nanotubes (CNTs) grown from the Fe nanoparticles: Si/SiO2/Al2O3/Fe(NP)/CNT. The Fe films and nanoparticles appear in an oxidized state. Some of the analyses of the CNTs/CNT forests appear to be unique: (i) the CNT forest appears to exhibit an interesting ‘channeling’ phenomenon by RBS, (ii) we observe an odd–even effect in the SIMS spectra of Cn species for n = 1 – 6, with the n ≥ 6 ions showing a steady decrease in intensity, and (iii) valence band characterization of CNTs using X‐radiation is reported. Initial analysis of the CNT forest by XPS shows that it is 100 at.% carbon. After one year, only ca. 0.25 at.% oxygen is observed. The information obtained from the combination of the different analytical tools provides a more complete understanding of our materials than a single technique, which is analogous to the story of ‘The Blind Men and the Elephant’. The raw XPS and ToF‐SIMS spectra from this study will be submitted to Surface Science Spectra for archiving. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The preparation of nanocomposite materials from carbon nanotubes (CNTs) and metal or metal oxide nanoparticles has important implications to the development of advanced catalytic and sensory materials. This paper reports findings of an investigation of the preparation of nanoparticle-coated carbon nanotube composite materials. Our approach involves molecularly mediated assembly of monolayer-capped nanoparticles on multiwalled CNTs via a combination of hydrophobic and hydrogen-bonding interactions between the capping/mediating shell and the CNT surface. The advantage of this route is that it does not require tedious surface modification of CNTs. We have demonstrated its simplicity and effectiveness for assembling alkanethiolate-capped gold nanoparticles of 2-5 nm core sizes onto CNTs with controllable coverage and spatially isolated character. The loading and distribution of the nanoparticles on CNTs depend on the relative concentrations of gold nanoparticles, CNTs, and mediating or linking agents. The composite nanomaterials can be dispersed in organic solvent, and the capping/linking shells can be removed by thermal treatment to produce controllable nanocrystals on the CNT surfaces. The nanocomposite materials are characterized using transmission electron microscopy and Fourier transform infrared spectroscopy techniques. The results will be discussed in terms of developing advanced catalytic and sensory nanomaterials.  相似文献   

19.
Prussian blue/carbon nanotube (PB/CNT) hybrids with excellent dispersibility in aqueous solutions were synthesized by adding CNTs to an acidic solution of Fe3+, [Fe(CN)6]3? and KCl. Fourier transform infrared spectroscopy, UV‐vis absorption spectroscopy and scanning electron microscopy were employed to confirm the formation of PB/CNT hybrids. The PB nanoparticles formed on the CNT surfaces exhibit a narrow size distribution and an average size of 40 nm. The present results demonstrate that the selective reduction of Fe3+ to Fe2+ by CNTs is the key step for PB/CNT hybrid formation. The subsequent fabrication of the PB/CNT hybrid films was achieved by layer‐by‐layer technique. The thus‐prepared PB/CNT hybrid films exhibit electrocatalytic activity towards H2O2 reduction.  相似文献   

20.
采用组合的量子化学ONIOM(B3LYP/6-311++G**:UFF)方法, 研究了不同直径的扶手椅型(CNT(5,5)、CNT(6,6)、CNT(8,8))和锯齿型(CNT(9,0)、CNT(10,0)、CNT(11,0))单壁碳纳米管(CNTs)的限制作用对硝基甲烷分子结构和热解反应的影响. 分子结构分析表明, 与单体硝基甲烷相比, 受限于直径较小的CNT(5,5)和CNT(9,0)碳纳米管内的硝基甲烷构型发生扭转, Cs对称性消失, C—N键长略微缩短; 而受限于CNT(6,6)、CNT(8,8)、CNT(10,0)和CNT(11,0)内的硝基甲烷结构变化不明显. 热解势能面计算发现, 与硝基甲烷单体的热解是一个无过渡态的解离过程明显不同: 硝基甲烷在CNT(5,5)和CNT(9,0)碳纳米管内沿C—N键的解离经历过渡态结构, 所需克服的活化能比单体的解离能分别下降了约71和58 kJ·mol-1; 在CNT(6,6)和CNT(10,0)碳纳米管内, 硝基甲烷的热解活化能略有下降; 而在直径较大的CNT(8,8)和CNT(11,0)碳纳米管内, 热解活化能基本不变. 研究结果表明, 直径小的碳纳米管的限制作用对硝基甲烷热解活化能影响显著, 碳纳米管的手性对硝基甲烷热解反应影响不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号