首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A high‐level ab initio Hartree‐Fock/Møller‐Plesset 2 and density functional theory quantum chemical calculations were performed on p‐chlorobenzaldehyde diperoxide energetic molecule to understand its bond topological, electrostatic, and energetic properties. The optimized molecular geometry for the basis set 6‐311G** exhibit chair diperoxide ring and planar aromatic side rings. Although the diperoxide ring bear same type of side rings, surprisingly, both the rings are almost perpendicular to each other, and the dihedral angle is 96.1°. The MP2 method predicts the O? O bond distance as ~1.466 Å. The charge density calculation reveals that the C? C bonds of chlorobenzaldehyde ring have rich electron density and the value is ~2.14 e Å?3. The maximum electron density of the O? O bonds does not lie along the internuclear axes; in view of this, a feeble density is noticed in the ring plane. The high negative values of laplacian of C? C bonds (approximately ?22.4 e Å?5) indicate the solidarity of these bonds, whereas it is found too small (approximately ?1.8 e Å?5 for MP2 calculation) in O? O bonds that shows the existence of high degree of bond charge depletion. The energy density in all the C? C bonds are found to be uniform. A high electronegative potential region is found at the diperoxide ring which is expected to be a nucleophilic attack area. Among the bonds, the O? O bond charge is highly depleted and it also has high bond kinetic energy density; in consequence of this, the molecular cleavage is expected to happen across these bonds when the material expose to any external stimuli such as heat or pressure treatment. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
What is the nature of the C? C bond? Valence bond and electron density computations of 16 C? C bonds show two families of bonds that flesh out as a phase diagram. One family, involving ethane, cyclopropane and so forth, is typified by covalent C? C bonding wherein covalent spin‐pairing accounts for most of the bond energy. The second family includes the inverted bridgehead bonds of small propellanes, where the bond is neither covalent nor ionic, but owes its existence to the resonance stabilization between the respective structures; hence a charge‐shift (CS) bond. The dual family also emerges from calculated and experimental electron density properties. Covalent C? C bonds are characterized by negative Laplacians of the density, whereas CS‐bonds display small or positive Laplacians. The positive Laplacian defines a region suffering from neighbouring repulsive interactions, which is precisely the case in the inverted bonding region. Such regions are rich in kinetic energy, and indeed the energy‐density analysis reveals that CS‐bonds are richer in kinetic energy than the covalent C? C bonds. The large covalent–ionic resonance energy is precisely the mechanism that lowers the kinetic energy in the bonding region and restores equilibrium bonding. Thus, different degrees of repulsive strain create two bonding families of the same chemical bond made from a single atomic constituent. It is further shown that the idea of repulsive strain is portable and can predict the properties of propellanes of various sizes and different wing substituents. Experimentally (M. Messerschmidt, S. Scheins, L. Bruberth, M. Patzel, G. Szeimies, C. Paulman, P. Luger, Angew. Chem. 2005 , 117, 3993–3997; Angew. Chem. Int. Ed. 2005 , 44, 3925–3928), the C? C bond families are beautifully represented in [1.1.1]propellane, where the inverted C? C is a CS‐bond, while the wings are made from covalent C? C bonds. What other manifestations can we expect from CS‐bonds? Answers from experiment have the potential of recharting the mental map of chemical bonding.  相似文献   

3.
By performing MP2/aug‐cc‐pVTZ ab initio calculations for a large set of dimer systems possessing a R? H hydridic bond involved in diverse types of intermolecular interactions (dihydrogen bonds, hydride halogen bonds, hydride hydrogen bonds, and charge‐assisted hydride hydrogen bonds), we show that this is rather an elongation than a shortening that a hydride bond undergoes on interaction. Contrary to what might have been expected on the basis of studies in uniform electric field, this elongation is accompanied by a blue instead of red shift of the R? H stretching vibration frequency. We propose that the “additional” elongation of the R? H hydridic bond results from the significant charge outflow from the sigma bonding orbital of R? H that weakens this bond. The more standard red shift obtained for stronger complexes is explained by means of the Hermansson's formula and the particularly strong electric field produced by the H‐acceptor molecule. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
A general and practical strategy for remote site‐selective functionalization of unactivated aliphatic C?H bonds in various amides by radical chemistry is introduced. C?H bond functionalization is achieved by using the readily installed N‐allylsulfonyl moiety as an N‐radical precursor. The in situ generated N‐radical engages in intramolecular 1,5‐hydrogen atom transfer to generate a translocated C radical which is subsequently trapped with various sulfone reagents to afford the corresponding C?H functionalized amides. The generality of the approach is documented by the successful remote C?N3, C?Cl, C?Br, C?SCF3, C?SPh, and C?C bond formation. Unactivated tertiary and secondary C?H bonds, as well as activated primary C?H bonds, can be readily functionalized by this method.  相似文献   

5.
The transformation of C? H bonds into other chemical bonds is of great significance in synthetic chemistry. C? H bond‐activation processes provide a straightforward and atom‐economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C? H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C? N bond precursor. As a consequence, a variety of nitrogen‐containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide‐directed tandem C? C/C? N bond‐formation process through C? H activation. The large body of research in this field over the past three years has established it as one of the most‐important topics in organic chemistry.  相似文献   

6.
The formation of C?C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C?C bond‐forming reactions are well‐known challenges. To achieve this goal through direct functionalization of C?H bonds in both of the coupling partners represents the state‐of‐the‐art in organic synthesis. Oxidative C?C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C?C bond‐forming reactions through direct C?H bond functionalization under completely metal‐free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms.  相似文献   

7.
Transition‐metal‐catalyzed C? F activation, in comparison with C? H activation, is more difficult to achieve and therefore less fully understood, mainly because carbon–fluorine bonds are the strongest known single bonds to carbon and have been very difficult to cleave. Transition‐metal complexes are often more effective at cleaving stronger bonds, such as C(sp2)? X versus C(sp3)? X. Here, the iridium‐catalyzed C? F activation of fluorarenes was achieved through the use of bis(pinacolato)diboron with the formation of the B? F bond and self‐coupling. This strategy provides a convenient method with which to convert fluoride aromatic compounds into symmetrical diaryl ether compounds. Moreover, the chemoselective products of the C? F bond cleavage were obtained at high yields with the C? Br and C? Cl bonds remaining.  相似文献   

8.
The MP2 ab initio quantum chemistry methods were utilized to study the halogen‐bond and pnicogen‐bond system formed between PH2X (X = Br, CH3, OH, CN, NO2, CF3) and BrY (Y = Br, Cl, F). Calculated results show that all substituent can form halogen‐bond complexes while part substituent can form pnicogen‐bond complexes. Traditional, chlorine‐shared and ion‐pair halogen‐bonds complexes have been found with the different substituent X and Y. The halogen‐bonds are stronger than the related pnicogen‐bonds. For halogen‐bonds, strongly electronegative substituents which are connected to the Lewis acid can strengthen the bonds and significantly influenced the structures and properties of the compounds. In contrast, the substituents which connected to the Lewis bases can produce opposite effects. The interaction energies of halogen‐bonds are 2.56 to 32.06 kcal·mol?1; The strongest halogen‐bond was found in the complex of PH2OH???BrF. The interaction energies of pnicogen‐bonds are in the range 1.20 to 2.28 kcal·mol?1; the strongest pnicogen‐bond was found in PH2Br???Br2 complex. The charge transfer of lp(P) ? σ*(Br? Y), lp(F) ? σ*(Br? P), and lp(Br) ? σ*(X? P) play important roles in the formation of the halogen‐bonds and pnicogen‐bonds, which lead to polarization of the monomers. The polarization caused by the halogen‐bond is more obvious than that by the pnicogen‐bond, resulting in that some halogen‐bonds having little covalent character. The symmetry adapted perturbation theory (SAPT) energy decomposition analysis showes that the halogen‐bond and pnicogen‐bond interactions are predominantly electrostatic and dispersion, respectively.  相似文献   

9.
The synthesis of phosphinoboronate esters containing a single P? B bond is reported, together with preliminary reactivity studies towards a range of organic substrates. These compounds add readily to aldehydes, ketones, aldimines, and α,β‐unsaturated enones to give primarily the corresponding 1,2‐addition products containing a new P? C bond. The first examples of transition‐metal‐catalyzed phosphinoborations of C‐C multiple bonds in which P? C and B? C bonds are formed in a single step are also disclosed; allenes react by a highly regioselective 1,2‐addition whereas terminal alkynes undergo a formal 1,1‐addition.  相似文献   

10.
The C? H bond activation of small alkanes by the gaseous MgO+. cation is probed by mass spectrometric means. In addition to H‐atom abstraction from methane, the MgO+. cation reacts with ethane, propane, n‐ and iso‐butane through several pathways, which can all be assigned to the occurrence of initial C? H bond activations. Specifically, the formal C? C bond cleavages observed are assigned to C? H bond activation as the first step, followed by cleavage of a β‐C? C bond concomitant with release of the corresponding alkyl radical. Kinetic modeling of the observed product distributions reveals a high preference of MgO+. for the attack of primary C? H bonds. This feature represents a notable distinction of the main‐group metal oxide MgO+. from various transition‐metal oxide cations, which show a clear preference for the attack of secondary C? H bonds. The results of complementary theoretical calculations indicate that the C? H bond activation of larger alkanes by the MgO+. cation is subject to pronounced kinetic control.  相似文献   

11.
The addition of nucleophiles to C?N bonds offers a highly efficient synthetic strategy for accessing nitrogen‐containing molecules. 1 Among the well‐developed addition reactions, such as the highly efficient Mannich reaction, various C? H bond‐activated compounds including carboxylic acid derivatives, nitroalkanes, and terminal alkynes have been applied as nucleophiles to achieve different classes of amines. 2 However, employing new nucleophiles without activated C? H bonds, such as internal alkynes and allenic esters are limited when using metal catalysts. 3 Herein, we wish to report a new addition of allenic esters to C?N bonds initiated by a silver‐catalyzed 1,3‐migration of propargylic esters.  相似文献   

12.
The thiourea S,S‐dioxide molecule is recognized as a zwitterion with a high dipole moment and an unusually long C? S bond. The molecule has a most interesting set of intermolecular interactions in the crystalline state—a relatively strong O???H? N hydrogen bond and very weak intermolecular C???S and N???O interactions. The molecule has Cs symmetry, and each oxygen atom is hydrogen‐bonded to two hydrogen atoms with O???H? N distances of 2.837 and 2.826 Å and angles of 176.61 and 158.38°. The electron density distribution is obtained both from Xray diffraction data at 110 K and from a periodic density functional theory (DFT) calculation. Bond characterization is made in terms of the analysis of topological properties. The covalent characters of the C? N, N? H, C? S, and S? O bonds are apparent, and the agreement on the topological properties between experiment and theory is adequate. The features of the Laplacian distributions, bond paths, and atomic domains are comparable. In a systematic approach, DFT calculations are performed based on a monomer, a dimer, a heptamer, and a crystal to see the effect on the electron density distribution due to the intermolecular interactions. The dipole moment of the molecule is enhanced in the solid state. The typical values of ρb and Hb of the hydrogen bonds and weak intermolecular C???S and N???O interactions are given. All the interactions are verified by the location of the bond critical point and its associated topological properties. The isovalue surface of Laplacian charge density and the detailed atomic graph around each atomic site reveal the shape of the valence‐shell charge concentration and provide a reasonable interpretation of the bonding of each atom.  相似文献   

13.
Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se???O chalcogen bonds that lead to conserved supramolecular recognition units. Se???O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se???O chalcogen bonds were explored using high‐resolution X‐ray charge density analysis and atons‐in‐molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se???O chalcogen bonding and soft‐metal‐like behavior of organoselenium. An analysis of the charge density around Se?N and Se?C covalent bonds in conjunction with the Se???O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se???O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS).  相似文献   

14.
A copper‐catalyzed aerobic oxidative amidation reaction of inert C?C bonds with tertiary amines has been developed for the synthesis of tertiary amides, which are significant units in many natural products, pharmaceuticals, and fine chemicals. This method combines C?C bond activation, C?N bond cleavage, and C?H bond oxygenation in a one‐pot protocol, using molecular oxygen as the sole oxidant without any additional ligands.  相似文献   

15.
The activation of carbon–fluorine (C?F) bonds is an important topic in synthetic organic chemistry. Metal‐mediated and ‐catalyzed elimination of β‐ or α‐fluorine proceeds under milder conditions than oxidative addition to C?F bonds. The β‐ or α‐fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations through these elimination processes (C?F bond cleavage), which are typically preceded by carbon–carbon (or carbon–heteroatom) bond formation, have been increasingly developed in the past five years as C?F bond activation methods. In this Minireview, we summarize the applications of transition‐metal‐mediated and ‐catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective with early studies and from a systematic perspective with recent studies.  相似文献   

16.
The N‐centered radical directed remote C?H bond functionalization via hydrogen‐atom‐transfer at distant sites has developed as an enormous potential tool for the organic synthetic chemists. Unactivated and remote secondary and tertiary, as well as selected primary C?H bonds, can be utilized for functionalization by following these methodologies. The synthesis of the heterocyclic scaffolds provides them extra attention for the modern days′ developments in this field of unactivated remote C?H bonds functionalizations.  相似文献   

17.
The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α‐hydroxy C?H bonds. This approach employs zinc‐mediated alcohol deprotonation to activate α‐hydroxy C?H bonds while simultaneously suppressing C?O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn‐based Lewis acids also deactivates other hydridic bonds such as α‐amino and α‐oxy C?H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3‐step synthesis of the drug Prozac exemplifies the utility of this new method.  相似文献   

18.
The concepts on o-hole and ~-hole bonds are suggested. A cocrystal with repeated 8-F-atom unit as basic struc- tural motif is assembled based on bifurcated C-I…N…I-C halogen/σ-hole bond and antiparallel double π-hole… F bonds by 1,2-diiodotetrafluorobenzene and acridine and characterized well by XRD, powder XRD and solid 19F NMR, etc. Also the calculated interaction energies are -26.8 and -31.5 kJ/mol for bifurcated C-I…N sp……2 halogen bonds, and -14.3 kJ/mol for a pair of n-hole…F bonds. In this system C-I…N halogen bond has stronger competitive ability to C-I…π halogen bond due to stronger basicity of N than π-system in acridine. The combination of the halogen/σ-hole and π-hole bonds or together with other weak interactions could play a key role in assembling function materials, molecular recognition and design of drugs and so on.  相似文献   

19.
We used static DFT calculations to analyze, in detail, the intramolecular hydrogen bonds formed in low‐molecular‐weight polyethylene glycol (PEG) with two to five repeat subunits. Both red‐shifted O?H???O and blue‐shifting C?H???O hydrogen bonds, which control the structural flexibility of PEG, were detected. To estimate the strength of these hydrogen bonds, the quantum theory of atoms in molecules was used. Car–Parrinello molecular dynamics simulations were used to mimic the structural rearrangements and hydrogen‐bond breaking/formation in the PEG molecule at 300 K. The time evolution of the H???O bond length and valence angles of the formed hydrogen bonds were fully analyzed. The characteristic hydrogen‐bonding patterns of low‐molecular‐weight PEG were described with an estimation of their lifetime. The theoretical results obtained, in particular the presence of weak C?H???O hydrogen bonds, could serve as an explanation of the PEG structural stability in the experimental investigation.  相似文献   

20.
The covalent nature of strong N?Br???N halogen bonds in a cocrystal ( 2 ) of N‐bromosuccinimide ( NBS ) with 3,5‐dimethylpyridine ( lut ) was determined from X‐ray charge density studies and compared to a weak N?Br???O halogen bond in pure crystalline NBS ( 1 ) and a covalent bond in bis(3‐methylpyridine)bromonium cation (in its perchlorate salt ( 3 ). In 2 , the donor N?Br bond is elongated by 0.0954 Å, while the Br???acceptor distance of 2.3194(4) is 1.08 Å shorter than the sum of the van der Waals radii. A maximum electron density of 0.38 e Å?3 along the Br???N halogen bond indicates a considerable covalent contribution to the total interaction. This value is intermediate to 0.067 e Å?3 for the Br???O contact in 1 , and approximately 0.7 e Å?3 in both N?Br bonds of the bromonium cation in 3 . A calculation of the natural bond order charges of the contact atoms, and the σ*(N1?Br) population of NBS as a function of distance between NBS and lut , have shown that charge transfer becomes significant at a Br???N distance below about 3 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号