首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PoyD is a radical S‐adenosyl methionine epimerase that introduces multiple D ‐configured amino acids at alternating positions into the highly complex marine peptides polytheonamide A and B. This novel post‐translational modification contributes to the ability of the polytheonamides to form unimolecular minimalistic ion channels and its cytotoxic activity at picomolar levels. Using a genome mining approach we have identified additional PoyD homologues in various bacteria. Three enzymes were expressed in E. coli with their cognate as well as engineered peptide precursors and shown to introduce diverse D ‐amino acid patterns into all‐L peptides. The data reveal a family of architecturally and functionally distinct enzymes that exhibit high regioselectivity, substrate promiscuity, and irreversible action and thus provide attractive opportunities for peptide engineering.  相似文献   

2.
In this work, CE‐LIF was employed to investigate the amino acid metabolites produced by Escherichia coli (E. coli) in microbial fuel cell (MFC). Two peptides, l ‐carnosine and l ‐alanyl‐glycine, together with six amino acids, cystine, alanine, lysine, methionine, tyrosine, arginine were separated and detected in advance by a CE‐LIF system coupled with a homemade spontaneous injection device. The injection device was devised to alleviate the effect of electrical discrimination for analytes during sample injection. All analytes could be completely separated within 8 min with detection limits of 20–300 nmol/L. Then this method was applied to analyze the substrate solution containing amino acid metabolites produced by E. coli. l ‐carnosine, l ‐alanyl‐glycine, and cystine were used as the carbon, nitrogen, and sulfur source for the E. coli culture in the MFC to investigate the amino acid metabolites during metabolism. Two MFCs were used to compare the activity of metabolism of the bacteria. In the sample collected at the running time 200 h of MFC, the amino acid methionine was discovered as the metabolite with the concentrations 23.3 μg/L.  相似文献   

3.
9‐(3‐Deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2,6‐diaminopurine ( 6 ) was synthesized by an enzymatic transglycosylation of 2,6‐diaminopurine ( 2 ) with 3′‐deoxycytidine ( 1 ) as a donor of 3‐deoxy‐D ‐erythro‐pentofuranose moiety. This transformation comprises i) deamination of 1 to 3′‐deoxyuridine ( 3 ) under the action of whole cell (E. coli BM‐11) cytidine deaminase (CDase), ii) the phosphorolytic cleavage of 3 by uridine phosphorylase (UPase) giving rise to the formation of uracil ( 4 ) and 3‐deoxy‐α‐D ‐erythro‐pentofuranose‐1‐O‐phosphate ( 5 ), and iii) coupling of the latter with 2 catalyzed by whole cell (E. coli BMT‐4D/1A) purine nucleoside phosphorylase (PNPase). Deamination of 6 by adenosine deaminase (ADase) gave 3′‐deoxyguanosine ( 7 ). Treatment of 6 with NaNO2 afforded 9‐(3‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2‐amino‐6‐oxopurine (3′‐deoxyisoguanosine; 8 ). Schiemann reaction of 6 (HF/HBF4+NaNO2) gave 9‐(3‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2‐fluoroadenine ( 9 ).  相似文献   

4.
An Escherichia coli whole‐cell biocatalyst for the direct hydroxylation of benzene to phenol has been developed. By adding amino acid derivatives as decoy molecules to the culture medium, wild‐type cytochrome P450BM3 (P450BM3) expressed in E.coli can be activated and non‐native substrates hydroxylated, without supplementing with NADPH. The yield of phenol reached 59 % when N‐heptyl‐l ‐prolyl‐l ‐phenylalanine (C7‐Pro‐Phe) was employed as the decoy molecule. It was shown that decoy molecules, especially those lacking fluorination, reached the cytosol of E. coli, thus imparting in vivo catalytic activity for the oxyfunctionalisation of non‐native substrates to intracellular P450BM3.  相似文献   

5.
A minimalist active site redesign of the L ‐fuculose‐1‐phosphate aldolase from E. coli FucA was envisaged, to extend its tolerance towards bulky and conformationally restricted N‐Cbz‐amino aldehyde acceptor substrates (Cbz=benzyloxycarbonyl). Various mutants at the active site of the FucA wild type were obtained and screened with seven sterically demanding N‐Cbz‐amino aldehydes including N‐Cbz‐prolinal derivatives. FucA F131A showed an aldol activity of 62 μmol h?1 mg?1 with (R)‐N‐Cbz‐prolinal, whereas no detectable activity was observed with the FucA wild type. For the other substrates, the F131A mutant gave aldol activities from 4 to about 25 times higher than those observed with the FucA wild type. With regard to the stereochemistry of the reactions, the (R)‐amino aldehydes gave exclusively the anti configured aldol adducts whereas their S counterparts gave variable ratios of anti/syn diastereoisomers. Interestingly, the F131A mutant was highly stereoselective both with (R)‐ and with (S)‐N‐Cbz‐prolinal, exclusively producing the anti and syn aldol adducts, respectively. Molecular models suggest that this improved activity towards bulky and more rigid substrates, such as N‐Cbz‐prolinal, could arise from a better fit of the substrate into the hydrophobic pocket created by the F131A mutation, due to an additional π–cation interaction with the residue K205′ and to efficient contact between the substrate and the mechanistically important Y113′ and Y209′ residues. An expedient synthesis of novel polyhydroxylated pyrrolizidines related to the hyacinthacine and alexine types was accomplished through aldol additions of dihydroxyacetone phosphate (DHAP) to hydroxyprolinal derivatives with the hyperactive FucA F131A as catalyst. The iminocyclitols obtained were fully characterised and found to be moderate to weak inhibitors (relative to 1,4‐dideoxy‐1,4‐imino‐L ‐arabinitol (LAB) and 1,4‐dideoxy‐1,4‐imino‐D ‐arabinitol (DAB)) against glycosidases and rat intestinal saccharidases.  相似文献   

6.
The radical S‐adenosyl‐l ‐methionine (SAM) enzyme NosL catalyzes the transformation of l ‐tryptophan into 3‐methyl‐2‐indolic acid (MIA), which is a key intermediate in the biosynthesis of a clinically interesting antibiotic nosiheptide. NosL catalysis was investigated by using the substrate analogue 2‐methyl‐3‐(indol‐3‐yl)propanoic acid (MIPA), which can be converted into MIA by NosL. Biochemical assays with different MIPA isotopomers in D2O and H2O unambiguously indicated that the 5′‐deoxyadenosyl (dAdo)‐radical‐mediated hydrogen abstraction is from the amino group of l ‐tryptophan and not a protein residue. Surprisingly, the dAdo‐radical‐mediated hydrogen abstraction occurs at two different sites of MIPA, thereby partitioning the substrate into different reaction pathways. Together with identification of an α,β‐unsaturated ketone shunt product, our study provides valuable mechanistic insight into NosL catalysis and highlights the remarkable catalytic flexibility of radical SAM enzymes.  相似文献   

7.
The electrochemical reduction of two 2-halogeno derivatives of 2′-deoxyadenosine, antileukemic agents (2-chloro-2′-deoxyadenosine (2-CldAdo) and 2-bromo-2t'-deoxyadenosine (2-BrdAdo)) and related ribosides (7-methyladenosine (m7Ado) and purine riboside (PR)) have been examined by d.c. and a.c. polarography as well as by macroelectrolysis.2-CldAdo (Cladribine, Leustatin) undergoes a one-step reduction in very acidic medium, pH 1–3, while the reduction of 2-BrdAdo occurs in two steps in the pH range 1–6. Both 2-halogeno adenosines involve reduction of the C-halogen bond and the pyrimidine ring. The reduction products have been examined by UV and nuclear magnetic resonance spectroscopy and high performance liquid chromatography analysis and the reduction mechanism has been formulated. All investigated compounds including PR and m7Ado exhibit high surface activity confirmed by a.c. polarography.All investigated compounds and theirs reduction products were tested for inhibitory activity vs. Escherichia coli PNP with inosine as substrate and inhibition constants have been determined. 2-CldAdo and 2-BrdAdo, as well as the reduction products of 2-CldAdo and PR, were found to be good inhibitors of E. coli PNP, whereas the reduction products of m7Ado and 2′-deoxyadenosine do not bind to the enzyme.  相似文献   

8.
Lysocin E ( 1 ) is a structurally complex 37‐membered depsipeptide comprising 12 amino‐acid residues with an N‐methylated amide and an ester linkage. Compound 1 binds to menaquinone (MK) in the bacterial membrane to exert its potent bactericidal activity. To decipher the biologically important functionalities within this unique antibiotic, we performed a comprehensive structure‐activity relationship (SAR) study by systematically changing the side‐chain structures of l ‐Thr‐1, d ‐Arg‐2, N‐Me‐d ‐Phe‐5, d ‐Arg‐7, l ‐Glu‐8, and d ‐Trp‐10. First, we achieved total synthesis of the 14 new side‐chain analogues of 1 by employing a solid‐phase strategy. We then evaluated the MK‐dependent liposomal disruption and antimicrobial activity against Staphylococcus aureus by 1 and its analogues. Correlating data between the liposome and bacteria experiments revealed that membrane lysis was mainly responsible for the antibacterial functions. Altering the cationic guanidine moiety of d ‐Arg‐2/7 to a neutral amide, and the C7‐acyl group of l ‐Thr‐1 to the C2 or C11 counterpart decreased the antimicrobial activities four‐ or eight‐fold. More drastically, chemical mutation of d ‐Trp‐10 to d ‐Ala‐10 totally abolished the bioactivities. These important findings led us to propose the biological roles of the side‐chain functionalities.  相似文献   

9.
Post‐translational modifying enzymes from the S‐adenosyl‐l ‐methionine (AdoMet) radical superfamily garner attention due to their ability to accomplish challenging biochemical reactions. Among them, a family of AdoMet radical epimerases catalyze irreversible l ‐ to d ‐amino acid transformations of diverse residues, including 18 sites in the complex sponge‐derived polytheonamide toxins. Herein, the in vitro activity of the model epimerase OspD is reported and its catalytic mechanism and substrate flexibility is investigated. The wild‐type enzyme was capable of leader‐independent epimerization of not only the stand‐alone core peptide, but also truncated and cyclic core variants. Introduction of d ‐amino acids can drastically alter the stability, structure, and activity of peptides; thus, epimerases offer opportunities in peptide bioengineering.  相似文献   

10.
Novel three‐residue helix‐turn secondary structures, nucleated by a helix at the N terminus, were generated in peptides that have ‘β‐Caa‐L ‐Ala‐L ‐Ala,’ ‘β‐Caa‐L ‐Ala‐γ‐Caa,’ and ‘β‐Caa‐L ‐Ala‐δ‐Caa’ (in which βCaa is C‐linked carbo‐β‐amino acid, γCaa is C‐linked carbo‐γ‐amino acid, and δ‐Caa is C‐linked carbo‐δ‐amino acid) at the C terminus. These turn structures are stabilized by 12‐, 14‐, and 15‐membered (mr) hydrogen bonding between NH(i)/CO(i+2) (i+2 is the last residue in the peptide) along with a 7‐mr hydrogen bond between CO(i)/NH(i+2). In addition, a series of α/β‐peptides were designed and synthesized with alternating glycine (Gly) and (S)‐β‐Caa to study the influence of an achiral α‐residue on the helix and helix‐turn structures. In contrast to previous results, the three ‘β–α–β’ residues at the C terminus (α‐residue being Gly) are stabilized by only a 13‐mr forward hydrogen bond, which resembles an α‐turn. Extensive NMR spectroscopic and molecular dynamics (MD) studies were performed to support these observations. The influence of chirality and side chain is also discussed.  相似文献   

11.
Nitrile reductase QueF catalyzes the reduction of 2‐amino‐5‐cyanopyrrolo[2,3‐d]pyrimidin‐4‐one (preQ0) to 2‐amino‐5‐aminomethylpyrrolo[2,3‐d]pyrimidin‐4‐one (preQ1) in the biosynthetic pathway of the hypermodified nucleoside queuosine. It is the only enzyme known to catalyze a reduction of a nitrile to its corresponding primary amine and could therefore expand the toolbox of biocatalytic reactions of nitriles. To evaluate this new oxidoreductase for application in biocatalytic reactions, investigation of its substrate scope is prerequisite. We report here an investigation of the active site binding properties and the substrate scope of nitrile reductase QueF from Escherichia coli. Screenings with simple nitrile structures revealed high substrate specificity. Consequently, binding interactions of the substrate to the active site were identified based on a new homology model of E. coli QueF and modeled complex structures of the natural and non‐natural substrates. Various structural analogues of the natural substrate preQ0 were synthesized and screened with wild‐type QueF from E. coli and several active site mutants. Two amino acid residues Cys190 and Asp197 were shown to play an essential role in the catalytic mechanism. Three non‐natural substrates were identified and compared to the natural substrate regarding their specific activities by using wild‐type and mutant nitrile reductase.  相似文献   

12.
Two new cyclic tetrapeptides, cyclo(l ‐Val‐l ‐Leu‐l ‐Val‐l ‐Ile) ( 1 ) and cyclo(l ‐Leu‐l ‐Leu‐l ‐Ala‐l ‐Ala) ( 2 ), and 15 known compounds, cyclo(Gly‐l ‐Leu‐Gly‐l ‐Leu) ( 3 ), cyclo(l ‐Ser‐l ‐Phe) ( 4 ), cyclo(l ‐Leu‐l ‐Ile) ( 5 ), cyclo(l ‐Tyr‐l ‐Phe) ( 6 ), cyclo(Gly‐l ‐Trp) ( 7 ), cyclo(l ‐Leu‐l ‐Tyr) ( 8 ), cyclo(Gly‐l ‐Phe) ( 9 ), cyclo(l ‐Phe‐trans‐4‐hydroxy‐l ‐Pro) ( 10 ), cyclo(l ‐Leu‐l ‐Leu) ( 11 ), cyclo(l ‐Val‐l ‐Phe) ( 12 ), cyclo(l ‐Val‐l ‐Leu) ( 13 ), cyclo(l ‐Ile‐l ‐Ile) ( 14 ), cyclo(l ‐Tyr‐l ‐Tyr) ( 15 ), turnagainolide A ( 16 ), and bacimethrin ( 17 ) were isolated from the fermentation broth of Streptomyces rutgersensis T009 obtained from Elaphodus davidianus excrement. Their structures were identified on the basis of spectroscopic analysis. Meanwhile, the absolute configurations of the amino acid residues of compounds 1 and 2 were determined by advanced Marfey method. Compound 3 was obtained from a natural source for the first time. The X‐ray single crystal diffraction data of bacimethrin ( 17 ) were also reported for the first time. Compounds 1  –  17 exhibited no antimicrobial activities with the MICs > 100 μg/ml.  相似文献   

13.
《Analytical letters》2012,45(3):521-541
Abstract

Mercury(II) in the range of 0.1–1 µg L?1 concentrations was found to be a much more efficient inhibitor of native peanut peroxidase (PNP) than of horseradish peroxidase (HRP) in the reaction of o‐dianisidine oxidation with hydrogen peroxide. The possible reason for the different degree of mercury(II) effects on the catalytic activity of both enzymes was studied. It was shown that the different number of glycans in PNP and HRP molecules (three and eight, respectively), or their absence in the molecule of wild‐type recombinant horseradish peroxidase refolded from E. coli inclusion bodies (recHRP), does not play a significant role in the effects caused by mercury(II). The efficient inhibition of PNP by mercury(II) in the absence of any other additives (for example, thiourea) originates from a greater mobility of the distal calcium ion in the enzyme molecule. A model scheme for the interaction of the studied plant peroxidases with mercury(II) was proposed. The PNP‐based enzymatic method for mercury(II) determination with c min =0.04 µg L?1 (0.2 nmol L?1) was developed and the possibility of PNP application for analysis of different samples was demonstrated.  相似文献   

14.
Protein arginine N‐methyl transferases (PRMTs) belong to a family of enzymes that modulate the epigenetic code through modifications of histones. In the present study, peptides emerging from a phage display screening were modified in the search for PRMT inhibitors through substitution with non‐proteinogenic amino acids, N‐alkylation of the peptide backbone, and incorporation of constrained dipeptide mimics. One of the modified peptides ( 23 ) showed an increased inhibitory activity towards several PRMTs in the low μm range and the conformational preference of this peptide was investigated and compared with the original hit using circular dichroism and NMR spectroscopy. Introducing two constrained tryptophan residue mimics (l ‐Aia) spaced by a single amino acid was found to induce a unique turn structure stabilized by a hydrogen bond and aromatic π‐stacking interaction between the two l ‐Aia residues.  相似文献   

15.
Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein–ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl‐xL complex with ABT‐737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single‐ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X‐ray crystallographic maps, and aiding fragment‐based drug design, respectively. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

16.
l ‐4‐Chlorokynurenine (l ‐4‐Cl‐Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder. Recently, this amino acid was naturally found as a residue in the lipopeptide antibiotic taromycin. Herein, we report the unprecedented conversion of l ‐tryptophan into l ‐4‐Cl‐Kyn catalyzed by four enzymes in the taromycin biosynthetic pathway from the marine bacterium Saccharomonospora sp. CNQ‐490. We used genetic, biochemical, structural, and analytical techniques to establish l ‐4‐Cl‐Kyn biosynthesis, which is initiated by the flavin‐dependent tryptophan chlorinase Tar14 and its flavin reductase partner Tar15. This work revealed the first tryptophan 2,3‐dioxygenase (Tar13) and kynurenine formamidase (Tar16) enzymes that are selective for chlorinated substrates. The substrate scope of Tar13, Tar14, and Tar16 was examined and revealed intriguing promiscuity, thereby opening doors for the targeted engineering of these enzymes as useful biocatalysts.  相似文献   

17.
l ‐4‐Chlorokynurenine (l ‐4‐Cl‐Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder. Recently, this amino acid was naturally found as a residue in the lipopeptide antibiotic taromycin. Herein, we report the unprecedented conversion of l ‐tryptophan into l ‐4‐Cl‐Kyn catalyzed by four enzymes in the taromycin biosynthetic pathway from the marine bacterium Saccharomonospora sp. CNQ‐490. We used genetic, biochemical, structural, and analytical techniques to establish l ‐4‐Cl‐Kyn biosynthesis, which is initiated by the flavin‐dependent tryptophan chlorinase Tar14 and its flavin reductase partner Tar15. This work revealed the first tryptophan 2,3‐dioxygenase (Tar13) and kynurenine formamidase (Tar16) enzymes that are selective for chlorinated substrates. The substrate scope of Tar13, Tar14, and Tar16 was examined and revealed intriguing promiscuity, thereby opening doors for the targeted engineering of these enzymes as useful biocatalysts.  相似文献   

18.
The specific interactions between lectins and chitosan–sugar hybrids, the synthesized chitosan derivatives linking carbohydrate residue to the amino group of chitosan, were investigated. The specific bindings of chitosan‐L ‐fucose (Fuc) hybrid with Ulex europaeus agglutinin I (UEA I, a lectin specific to L ‐Fuc), and chitosan‐N‐acetyl‐D ‐glucosamine (D ‐GlcNAc) hybrid with Concanavalin A (Con A, a lectin specific to D ‐glucose, D ‐mannose and D ‐GlcNAc), were confirmed by a surface plasmon resonance technique. The microscopic observation of Pseudomonas aeruginosa, which was preincubated with the fluorescein isothiocyanate‐labeled chitosan‐L ‐Fuc hybrid, showed bacteria aggregation. The aggregation was thought to be resulted from the specific interaction of the L ‐Fuc residue of the hybrid with PA‐II lectin on the surface of P. aeruginosa. The chitosan‐L ‐Fuc hybrid inhibited P. aeruginosa growth more effectively in comparison with the other hybrids or unmodified chitosan. The enhancement of antimicrobial activity of chitosan‐L ‐Fuc hybrid could be attributed to the specific binding between PA‐II lectin of P. aeruginosa and L ‐Fuc residue of the L ‐Fuc hybrid. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
We have changed the amino acid set of the genetic code of Escherichia coli by evolving cultures capable of growing on the synthetic noncanonical amino acid L ‐β‐(thieno[3,2‐b]pyrrolyl)alanine ([3,2]Tpa) as a sole surrogate for the canonical amino acid L ‐tryptophan (Trp). A long‐term cultivation experiment in defined synthetic media resulted in the evolution of cells capable of surviving Trp→[3,2]Tpa substitutions in their proteomes in response to the 20 899 TGG codons of the E. coli W3110 genome. These evolved bacteria with new‐to‐nature amino acid composition showed robust growth in the complete absence of Trp. Our experimental results illustrate an approach for the evolution of synthetic cells with alternative biochemical building blocks.  相似文献   

20.
The cyclic decapeptide gramicidin S (GS) was used as a model for the evaluation of four turn mimetics. For this purpose, one of the D ‐Phe‐Pro two‐residue turn motifs in the rigid cyclic β‐hairpin structure of GS was replaced with morpholine amino acids (MAA 2 – 5 ), differing in stereochemistry and length of the side‐chain. The conformational properties of the thus obtained GS analogues ( 6 – 9 ) was assessed by using NMR spectroscopy and X‐ray crystallography, and correlated with their biological properties (antimicrobial and hemolytic activity). We show that compound 8 , containing the dipeptide isostere trans‐MAA 4 , has an apparent high structural resemblance with GS and that its antibacterial activity against a panel of Gram positive and ‐negative bacterial strains is better than the derivatives 6 , 7 and 9 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号