首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alternative method for the synthesis of single‐walled carbon nanotubes (SWCNTs) is presented, which is based on the co‐evaporation of a pure graphite body and a metal catalyst (nickel). The graphite body is inductively heated in a high frequency furnace up to ~2400 °C. Characterization of the produced soot was performed using SEM, TEM and Raman spectroscopy techniques.  相似文献   

2.
A novel approach to solubilize single‐walled carbon nanotubes (SWCNTs) in the aqueous phase is described by employing supramolecular surface modification. We use cyclodextrin complexes of synthetic molecules that contain a planar pyrene moiety or a bent, shape‐fitted triptycene moiety as a binding group connected through a spacer to an adamantane moiety that is accommodated in the cyclodextrin cavity. The binding groups attach to the sidewalls of SWCNTs through a π–π stacking interaction to yield a supramolecular system that allows the SWCNTs to dissolve in the aqueous phase through the formed hydrophilic cyclodextrin shell. The black aqueous SWCNT solutions obtained are stable over a period of months. They are characterized through absorbance, static, and time‐resolved fluorescence spectroscopy as well as Raman spectroscopy, TEM, and fluorescence‐decay measurements. Furthermore, the shape‐fitted triptycene‐based system shows a pronounced selectivity for SWCNTs with a diameter of 1.0 nm.  相似文献   

3.
Double‐wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties of these modified DWCNTs are then compared with an analogous sample based on single‐wall carbon nanotubes (SWCNTs). Raman spectroscopy shows the presence of characteristic radial breathing mode vibrations, confirming that the samples partly retain the integrity of the nanotubes in the case of DWCNTs, including the internal and external nanotubes. Quantification of the pyridyl content for both samples (DWCNT and SWCNT derivatives) is based on X‐ray photoelectron spectroscopy and thermogravimetric profiles, showing very similar substituent load. Both pyridyl‐containing nanotubes (DWCNTs and SWCNTs) form a complex with zinc porphyrin (ZnP), as evidenced by the presence of two isosbestic points in the absorption spectra of the porphyrin upon addition of the pyridyl‐functionalized nanotubes. Supramolecular complexes based on pyridyl‐substituted DWCNTs and SWCNTs quench the emission and the triplet excited state identically, through an energy‐transfer mechanism based on pre‐assembly of the ground state. Thus, the presence of the intact inner wall in DWCNTs does not influence the quenching behavior, with respect to SWCNTs, for energy‐transfer quenching with excited ZnP. These results sharply contrast with previous ones referring to electron‐transfer quenching, in which the double‐wall morphology of the nanotubes has been shown to considerably reduce the lifetime of charge separation, owing to faster electron mobility in DWCNTs compared to SWCNTs.  相似文献   

4.
Drying‐tube‐shaped single‐walled carbon nanotubes (SWCNTs) with multiple carbon ad‐dimer (CD) defects are obtained from armchair (n,n,m) SWCNTs (n=4, 5, 6, 7, 8; m=7, 13). According to the isolated‐pentagon rule (IPR) the drying‐tube‐shaped SWCNTs are unstable non‐IPR species, and their hydrogenated, fluorinated, and chlorinated derivatives are investigated. Interestingly, chemisorptions of hydrogen, fluorine, and chlorine atoms on the drying tube‐shaped SWCNTs are exothermic processes. Compared to the reaction energies for binding of H, F, and Cl atoms to perfect and Stone–Wales‐defective armchair (5,5) nanotubes, binding of F with the multiply CD defective SWCNTs is stronger than with perfect and Stone–Wales‐defective nanotubes. The reaction energy for per F2 addition is between 85 and 88 kcal mol?1 more negative than that per H2 addition. Electronic structure analysis of their energy gaps shows that the CD defects have a tendency to decrease the energy gap from 1.98–2.52 to 0.80–1.17 eV. After hydrogenation, fluorination, and chlorination, the energy gaps of the drying‐tube‐shaped SWCNTs with multiple CD defects are substantially increased to 1.65–3.85 eV. Furthermore, analyses of thermodynamic stability and nucleus‐independent chemical shifts (NICS) are performed to analyze the stability of these molecules.  相似文献   

5.
A new and facile method for the preparation of single‐walled carbon nanotubes (SWCNTs) decorated with Cu nanoparticles (CuNPs) formed on a double‐stranded DNA template in aqueous solution has been developed. A specially designed synthetic DNA sequence, containing a single‐stranded domain for the dispersion of carbon nanotubes and double‐stranded domains for the selective growth of CuNPs, was utilized. The final SWCNT/CuNP hybrids were characterized using fluorescence spectroscopy and transmission electron microscopy. The analyses clearly demonstrated the selective formation of uniform CuNPs on the carbon nanotube scaffold.  相似文献   

6.
Using a reductive sidewall functionalization concept, we prepared for the first time a covalent inter‐carbon‐allotrope hybrid consisting of single‐walled carbon nanotubes (SWCNTs) and the endohedral fullerene Sc3N@C80. The new compound type was characterized through a variety of techniques including absorption spectroscopy, Raman spectroscopy, TG‐MS, TG‐GC‐MS, and MALDI‐TOF MS. HRTEM investigations were carried out to visualize this highly integrated architecture.  相似文献   

7.
Selective polymer wrapping is a promising approach to obtain high‐chiral‐purity single‐walled carbon nanotubes (SWCNTs) needed in technical applications and scientific studies. We showed that among three fluorene‐based polymers with different side‐chain lengths and backbones, poly[(9,9‐dihexylfluorenyl‐2,7‐diyl)‐co‐(9,10‐anthracene)] (PFH‐A) can selectively extract SWCNTs synthesized from the CoSO4/SiO2 catalyst, which results in enrichment of 78.3 % (9,8) and 12.2 % (9,7) nanotubes among all semiconducting species. These high‐chiral‐purity SWCNTs may find potential applications in electronics, optoelectronics, and photovoltaics. Furthermore, molecular dynamics simulations suggest that the extraction selectivity of PFH‐A relates to the bending and alignment of its alkyl chains and the twisting of its two aromatic backbone units (biphenyl and anthracene) relative to SWCNTs. The strong π–π interaction between polymers and SWCNTs would increase the extraction yield, but it is not beneficial for chiral selectivity. Our findings suggest that the matching between the curvature of SWCNTs and the flexibility of the polymer side chains and the aromatic backbone units is essential in designing novel polymers for selective extraction of (n,m) species.  相似文献   

8.
Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite‐based anodes in lithium‐ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp2‐carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high‐performance carbon‐based anode materials. Herein, we employed flexible single‐walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip‐coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron‐/ion‐transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium‐ion batteries, the SWCNT‐GF electrode delivered a specific capacity of 953 mA h g?1 at a current density of 0.1 A g?1 and a high reversible capacity of 606 mA h g?1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g?1 and 189 mA h g?1 after 2200 cycles at 5 A g?1.  相似文献   

9.
For the first time ssDNA (25‐aptamer of mixed dA, dT, dG, and dC) was wrapped around functionalized single‐walled carbon nanotubes (SWCNTs), whose external surfaces were attached to multiple triazole‐(ethylene glycol)‐dA ligands. This method of hybridization involved the formation of hydrogen bonds between dT of ssDNA and dA of functionalized SWCNTs. It deviates from the reported π–π stacking between the nucleobases of DNA and the external sidewalls of nanotubes. The structural properties of the functionalized SWCNTs and its ssDNA complex were characterized by spectroscopic (including CD and Raman), thermogravimetric, and microscopic (TEM) methods. The results thus obtained establish a new platform of DNA delivery by use of nanotubes as a new vehicle with great potential in biomedical applications and drug development.  相似文献   

10.
Residual metal impurities were exploited as reactants in the functionalization of the surface of single‐walled carbon nanotubes (SWCNT) with nickel hexacyanoferrate (NiHCF) by simple electrochemical cycling in ferricyanide solutions. This facile in situ electrochemical modification process provides intimate contact between NiHCF and SWCNTs that improves the stability of the redox property and reactivity of NiHCF. The characteristic redox behavior of NiHCF on SWCNT surfaces can be used as an electrochemical probe to access qualitative and quantitative information on unknown electroactive metal impurities in SWCNTs. Significantly, the NiHCF‐modified SWCNTs exhibit pseudocapacitive behavior, and the calculated specific capacitances are 710 and 36 F g?1 for NiHCF‐SWCNTs and SWCNTs respectively. Furthermore, NiHCF‐SWCNTs were transformed into Ni(OH)2/SWCNTs and used for enzymeless glucose oxidation.  相似文献   

11.
In this article, we show that the redox properties of the regulatory peptide L ‐glutathione are affected by the presence of nickel oxide impurities within single‐walled carbon nanotubes (SWCNTs). Glutathione is a powerful antioxidant that protects cells from oxidative stress by removing free radicals and peroxides. We show that the L ‐cysteine moiety in L ‐glutathione is responsible for the susceptibility to oxidation by metallic impurities present in the carbon nanotubes. These results have great significance for assessing the toxicity of carbon‐nanotube materials. The SWCNTs were characterized by Raman spectroscopy, high‐resolution X‐ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive X‐ray spectroscopy.  相似文献   

12.
Single‐walled carbon nanotubes (SWNTs) synthesized with different methods are investigated by using multiple characterization techniques, including Raman scattering, optical absorption, and X‐ray absorption near edge structure, along with X‐ray photoemission by following the total valence bands and C 1s core‐level spectra. Four different SWNT materials (produced by arc discharge, HiPco, laser ablation, and CoMoCat methods) contain nanotubes with diameters ranging from 0.7 to 2.8 nm. The diameter distribution and the composition of metallic and semiconducting tubes of the SWNT materials are strongly affected by the synthesis method. Similar sp2 hybridization of carbon in the oxygenated SWNT structure can be found, but different surface functionalities are introduced while the tubes are processed. All the SWNTs demonstrate stronger plasmon resonance excitations and lower electron binding energy than graphite and multiwalled carbon nanotubes. These SWNT materials also exhibit different valence‐band X‐ray photoemission features, which are considerably affected by the nanotube diameter distribution and metallic/semiconducting composition.  相似文献   

13.
《Electroanalysis》2004,16(8):684-687
In 0.05 mol/L phosphate buffer solution (pH 7.0), carbon nanotubes modified electrode exhibits rapid response, strong catalytic activity with high stability toward the electrochemical oxidation of catechol. The electrochemical behavior of catechol on both the multi‐walled and single‐walled carbon nanotubes modified electrode was investigated. The experimental conditions, such as pH of the solution and scan rate were optimized. The currents (measured by constant potential amperometry) increase linearly with the concentrations of catechol in the range of 2.0×10?5–1.2×10?3 mol/L. Moreover, at the multi‐walled carbon nanotubes modified electrode the electrochemical responses of catechol and ascorbic acid can be separated clearly.  相似文献   

14.
本文报道了微波辅助下,利用过氧化月桂酰分解得到的十一烷基,化学功能化修饰单壁碳纳米管。这种快速、高效的方法将反应时间缩短至10分钟,并得到了比传统回流方法具有更高接枝率的产物。利用傅立叶变换红外光谱(FT-IR),热失重分析(TGA),拉曼光谱,探究了不同的反应时间和微波功率对单壁碳纳米管的接枝率的影响。结果表明:过长的反应时间会导致部分的去功能化的发生,而过高的微波功率(大于900瓦),则会将单壁碳纳米管上起初键连上的十一烷基剥落下来。分散性照片和高分辨率透射电子显微镜(HRTEM)照片显示出,功能化后的单壁碳纳米管与原始的碳管相比,在有机溶剂中的分散性有了明显的提高。  相似文献   

15.
A facile polymerization of an allyl‐functionalized N‐carboxyanhydride (NCA) monomer is utilized to construct an A‐B‐A‐type triblock structure containing β‐sheet‐rich oligomeric peptide segments tethered by a poly(ethylene oxide) chain, which are capable of dispersing and gelating single‐walled carbon nanotubes (SWCNTs) noncovalently in organic solvents, resulting in significant enhancement of the mechanical properties of polypeptide‐based organogels.  相似文献   

16.
CVD法制备单壁碳纳米管的纯化与表征   总被引:4,自引:1,他引:4  
针对CVD法合成的单壁碳纳米管的特点提出了较为有效的纯化方法,并对纯化后碳管的存在形式进行了表征.结果表明,CVD法制备的单壁碳纳米管中所含的载体和催化剂绝大部分可以通过盐酸除去.在表面活性剂溶液中超声分散碳纳米管,可以使管与无定形碳及石墨状碎片进行有效的剥离.空气加热氧化法和稀硝酸回流法可有效地去除碳杂质,稀硝酸回流可以在纯化的同时对管的末端及侧壁进行功能化.  相似文献   

17.
We report a considerably promising method based on agarose gel electrophoresis (AGE) to separate single‐walled carbon nanotubes by adding a water‐soluble polyfluorene (w‐PFO) as surfactant into the agarose gel. In this effective method, the AGE/w‐PFO gel network will trap more semiconducting single‐walled carbon nanotubes (SWNTs) with the assistance of w‐PFO, for the strong interaction between w‐PFO and semiconducting species. The optical absorbance, photoluminescence emission and resonant Raman scattering characterization were used to verify the separation effect. The purity of separated semiconducting species is as high as (98±1)%. The demonstrated field effect transistors give the on/off ratio and mobility about 27000 and 10.2 cm2·V?1·s?1, respectively.  相似文献   

18.
Summary: Multi‐walled carbon nanotubes (MWNTs) have been successfully modified with polyacrylonitrile (PAN) by a cathodic electrochemical process. The surface‐modified MWNTs afforded are then dispersible in good solvents for PAN, such as N,N‐dimethylformamide (DMF). Collected from a dilute dispersion, these MWNTs are essentially disentangled, as confirmed by transmission electron microscopy (TEM) analysis. From the differential scanning calorimetry (DSC) traces for polyacrylonitrile and polyacrylonitrile‐grafted MWNTs, the maximum grafting ratio is estimated at 0.28.

Electrochemical grafting of polyacrylonitriles onto the surface of multi‐walled carbon nanotubes.  相似文献   


19.
We report the sonophysically‐exfoliated methods access to the preparation of homogeneous‐free multi‐walled carbon nanotubes (MWCNTs) in water solution. Highly stable, uniform, individual MWCNTs are entirely performed through sodium dodecylsulfate surfactants by means of a tip sinicator. HRTEM images show that the crystalline finger walls of individual CNTs are apparently observed. Raman spectrum of MWCNTs shows that the so‐called G'‐band, associated with metallic electronic structure, was significantly observed at 2644 cm?1 with full‐width at half‐maximum of 262 cm?1, indicating that the sonication physical methods do not alter their electric properties. Owing to its easy‐to‐use procedure and low cost of implementation, this approach could lead to the commercial viability of the large‐scale MWCNTs processing.  相似文献   

20.
The encapsulation of viologen derivatives into metallic single‐walled carbon nanotubes (SWNTs) results in the opening of a band gap, making the SWNTs semiconducting. Raman spectroscopy, thermogravimetric analysis, and aberration‐corrected high‐resolution transmission electron microscopy confirm the encapsulation process. Through the fabrication of field‐effect transistor devices, the change of the electronic structure of the tubes from metallic to semiconducting upon the encapsulation is confirmed. The opening of a gap in the band structure of the tubes was not detected in supramolecular controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号