首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the characterization of a novel hetero‐selective DNA‐like duplex of pyrene and anthraquinone pseudo base pairs. The pyrene/anthraquinone pairs showed excellent selectivity in hetero‐recognition and even trimers were found to form a hetero‐duplex. Pyrene and anthraquinone moieties were tethered on acyclic D ‐threoninol linkers and linked to adjacent residues by using standard phosphoramidite chemistry. When pyrene and anthraquinone were incorporated at pairing positions in complementary strands of natural DNA oligonucleotides, the duplex was stabilized significantly. Moreover, a pyrene hexamer and an anthraquinone hexamer formed a stable artificial hetero‐duplex without the assistance of natural base pairs. The pyrene/anthraquinone pair was so stable that even trimers formed a hetero‐duplex under conditions in which natural DNA strands of three residues do not.  相似文献   

2.
To shed light on intramolecular charge‐transfer phenomena in 1,2,3‐triazole‐linked materials, a series of 1,2,3‐triazole‐linked push–pull chromophores were prepared and studied experimentally and computationally. Investigated modifications include variation of donor and/or acceptor strength and linker moiety as well as regioisomers. Photophysical characterization of intramolecular charge‐transfer features revealed ambipolar behavior of the triazole linker, depending on the substitution position. Furthermore, non‐centrosymmetric materials were subjected to second‐harmonic generation measurements, which revealed the high nonlinear optical activity of this class of materials.  相似文献   

3.
A new donor‐DNA‐acceptor system has been synthesized containing Nile red‐modified 2′‐deoxyuridine as charge donor and 6‐N,N‐dimethylaminopyrene‐modified 2′‐deoxyuridine as acceptor to investigate the charge transfer in DNA duplexes using fluorescence spectroscopy and time‐resolved femtosecond pump‐probe techniques. Fluorescence quenching experiments revealed that the quenching efficiency of Nile red depends on two components: 1) the presence of a charge acceptor and 2) the number of intervening CG and AT base pairs between donor and acceptor. Surprisingly, the quenching efficiency of two base pairs (73 % for CG and the same for AT) is higher than that for one base pair (68 % for CG and 37 % for AT), while at a separation of three base pairs less than 10 % quenching is observed. A comparison with the results of time‐resolved measurements revealed a correlation between quenching efficiency and the first ultrafast time constant suggesting that quenching proceeds via a charge transfer from the donor to the acceptor. All transients are satisfactorily described with two decays: a rapid charge transfer with 600 fs (~1012 s?1) that depends strongly and in a non‐linear fashion on the distance between donor and acceptor, and a slower time constant of a few picoseconds (~1011 s?1) with weak distance dependence. A third time constant on a nanosecond time scale represents the fluorescence lifetime of the donor molecule. According to these results and time‐dependent density functional theory (TDDFT) calculations a combination of single‐step superexchange and multistep hopping mechanisms can be proposed for this short‐range charge transfer. Furthermore, significantly less quenching efficiency and slower charge transfer rates at very short distances indicate that the direct interaction between donor and acceptor leads to a local structural distortion of DNA duplexes which may provide some uncertainty in identifying the charge transfer rates in short‐range systems.  相似文献   

4.
5.
Symmetric‐ and asymmetric hexaarylbenzenes (HABs), each substituted with three electron‐donor triarylamine redox centers and three electron‐acceptor triarylborane redox centers, were synthesized by cobalt‐catalyzed cyclotrimerization, thereby forming compounds with six‐ and four donor–acceptor interactions, respectively. The electrochemical‐ and photophysical properties of these systems were investigated by cyclovoltammetry (CV), as well as by absorption‐ and fluorescence spectroscopy, and compared to a HAB that only contained one neighboring donor–acceptor pair. CV measurements of the asymmetric HAB show three oxidation peaks and three reduction peaks, whose peak‐separation is greatly influenced by the conducting salt, owing to ion‐pairing and shielding effects. Consequently, the peak‐separations cannot be interpreted in terms of the electronic couplings in the generated mixed‐valence species. Transient‐absorption spectra, fluorescence‐solvatochromism, and absorption spectra show that charge‐transfer states from the amine‐ to the boron centers are generated after optical excitation. The electronic donor–acceptor interactions are weak because the charge transfer has to occur predominantly through space. Moreover, the excitation energy of the localized excited charge‐transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within the fluorescence lifetime (about 60 ns). This result was confirmed by steady‐state fluorescence‐anisotropy measurements, which further indicated symmetry‐breaking in the superficially symmetric HAB. Adding fluoride ions causes the boron centers to lose their accepting ability owing to complexation. Consequently, the charge‐transfer character in the donor–acceptor chromophores vanishes, as observed in both the absorption‐ and fluorescence spectra. However, the ability of the boron center as a fluoride sensor is strongly influenced by the moisture content of the solvent, possibly owing to the formation of hydrogen‐bonding interactions between water molecules and the fluoride anions.  相似文献   

6.
Charge‐transfer (CT) assemblies of aromatic donor (D) and acceptor (A) molecules have recently gained attention as a promising material for organic electronics and ferroelectrics. Two major factors which govern their functions are the strength of CT interaction and their supramolecular nanostructuring. Here we present coronene‐naphthalenediimide (NDI)‐based novel D‐A pairs that form alternately stacked CT assemblies. Through systematic substitution of the NDI derivatives and studying their CT interactions with coronene, a clear understanding of the secondary forces responsible for controlling their association is gained. Finally, the use of CT‐based supramolecular amphiphiles for their nanostructural engineering into ordered one‐dimensional (1‐D) assemblies is demonstrated.  相似文献   

7.
8.
A series of donor–acceptor‐substituted alkynes, 2 a – f , was synthesized in which the length of the π‐conjugated polyyne spacer between the N,N‐diisopropylanilino donor and the 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) acceptor was systematically changed. The effect of this structural change on the optoelectronic properties of the molecules and, ultimately, their third‐order optical nonlinearity was comprehensively investigated. The branched N,N‐diisopropyl groups on the anilino donor moieties combined with the nonplanar geometry of 2 a – f imparted exceptionally high solubility to these chromophores. This important property allowed for performing INADEQUATE NMR measurements without 13C labeling, which, in turn, resulted in a complete assignment of the carbon skeleton in chromophores 2 a – f and the determination of the 13C–13C coupling constants. This body of data provided unprecedented insight into characteristic 13C chemical shift patterns in push–pull‐substituted polyynes. Electrochemical and UV/Vis spectroscopic studies showed that the HOMO–LUMO energy gap decreases with increasing length of the polyyne spacer, while this effect levels off for spacers with more than four acetylene units. The third‐order optical nonlinearity of this series of molecules was determined by measuring the rotational averages of the third‐order polarizabilities (γrot) by degenerate four‐wave mixing (DFWM). These latter studies revealed high third‐order optical nonlinearities for the new chromophores; most importantly, they provided fundamental insight into the effect of the conjugated spacer length in D–A polyynes, that can be exploited in the future design of suitable charge‐transfer chromophores for applications in optoelectronic devices.  相似文献   

9.
Donor–acceptor (D–A) structures were obtained by alternating arrays of hexa‐peri‐hexabenzocoronene (HBC) and benzo[c][1,2,5]thiadiazole (BTZ). Optoelectronic investigations revealed a charge transfer due to strong push–pull interactions. 2 D wide‐angle X‐ray scattering (WAXS) data indicated an arrangement in liquid‐crystalline columnar assemblies, in which the π‐stacking distances and molecular orientation depend on the number of HBC units in the molecules.  相似文献   

10.
A method involving the Diels–Alder (DA) cycloaddition of diacenaphtheno[1,2‐b;1′,2′‐d]thiophenes (DATs) with N‐alkylacenaphthylene‐5,6‐dicarboximides (AIs) was developed to synthesize decacyclene monoimides (DCMIs). The reactions generate the corresponding 1:2 adducts (BAIAs) as major products together with 1:1 adducts (the DCMIs). The molecular structure of BAIAb (N‐octyl derivative) was unambiguously assigned as the bis‐adduct having an endo,endo spatial disposition of the two acenaphthylene‐5,6‐dicarboximide moieties by using X‐ray crystallographic analysis. Relative to the absorption spectrum of decacyclene triimide (DCTIa, N‐2‐ethylhexyl derivative), that of the analogous N‐2‐ethylhexyl‐substituted monoadduct, DCMIa, is bathochromically shifted despite the fact that it possesses a less delocalized π‐electron system. DCMIa does not fluoresce in various organic solvents, whereas DCTIa emits yellow fluorescence in CH2Cl2 with a low quantum yield (ΦSN). Moreover, DCMIa in CDCl3 displays concentration‐dependent 1H NMR spectroscopy behavior, which suggests that it self‐aggregates with an association constant (Ka) of (193±50) m ?1 at 20 °C. Despite the presence of four bulky tert‐butyl groups in DCMIa, its Ka value for aggregate formation is comparable to that of DCTIa [(495±42) m ?1], which does not contain tert‐butyl substituents. Spectroscopic studies with the bis‐adduct BAIAa (N‐2‐ethylhexyl derivative) show that it displays remarkable solvatofluorochromism corresponding to an emission maximum shift (ΔλEM) of 100 nm. The results of density functional theory calculations on BAIAc (N‐methyl derivative) demonstrate that a considerable spatial separation exists between the HOMO and LUMO coefficient distributions, which indicates that the ground‐to‐excited state transition of the novel three‐dimensional acceptor–donor–acceptor BAIAa system should have intramolecular charge‐transfer character.  相似文献   

11.
A panchromatic 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene –zinc phthalocyanine conjugate (Bodipy–ZnPc) 1 was synthesized starting from phthalocyanine aldehyde 4 , via dipyrromethane 3 and dipyrromethene 2 . Conjugate 1 represents the first example in which a Bodipy unit is tethered to the peripheral position of a phthalocyanine core. Electrochemical and optical measurements provided evidence for strong electronic interactions between the Bodipy and ZnPc constituents in the ground state of 1 . When conjugate 1 is subjected to photoexcitation in the spectral region corresponding to the Bodipy absorption, the strong fluorescence characteristic of the latter subunit is effectively quenched (i.e., ≥97 %). Excitation spectral analysis confirmed that the photoexcited Bodipy and the tethered ZnPc subunits interact and that intraconjugate singlet energy transfer occurs with an efficiency of ca. 25 %. Treatment of conjugate 1 with N‐pyridylfulleropyrrolidine ( 8 ), an electron‐acceptor system containing a nitrogen ligand, gives rise to the novel electron donor–acceptor hybrid 1 ? 8 through ligation to the ZnPc center. Irradiation of the resulting supramolecular ensemble within the visible range leads to a charge‐separated Bodipy–ZnPc.+–C60.? radical‐ion‐pair state, through a sequence of excited‐state and charge transfers, characterized by a remarkably long lifetime of 39.9 ns in toluene.  相似文献   

12.
13.
A new solid‐sate donor–acceptor system based on periodic mesoporous organosilica (PMO) has been constructed. Viologen (Vio) was covalently attached to the framework of a biphenyl (Bp)‐bridged PMO. The diffuse reflectance spectrum showed the formation of charge‐transfer (CT) complexes of Bp in the framework with Vio in the mesochannels. The transient absorption spectra upon excitation of the CT complexes displayed two absorption bands due to radical cations of Bp and Vio species, which indicated electron transfer from Bp to Vio. The absorption bands slowly decayed with a half‐decay period of approximately 10 μs but maintained the spectral shape, thereby suggesting persistent charge separation followed by recombination. To utilize the charge separation for photocatalysis, Vio–Bp–PMO was loaded with platinum and its photocatalytic performance was tested. The catalyst successfully evolved hydrogen with excitation of the CT complexes in the presence of a sacrificial agent. In contrast, reference catalysts without either Bp–PMO or Vio gave no or little hydrogen generation, respectively. In addition, a homogeneous solution system of Bp molecules, methylviologen, and colloidal platinum also evolved no hydrogen, possibly due to a weaker electron‐donating feature of molecular Bp than that of densely packed Bp in Bp–PMO. These results indicated that densely packed Bp and Vio are essential for hydrogen evolution in this system and demonstrated the potential of PMO as the basis for donor–acceptor systems suitable for photocatalysis.  相似文献   

14.
Nanoindentation and scratch experiments on 1:1 donor–acceptor complexes, 1 and 2 , of 1,2,4,5‐tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long‐range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile‐up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 %) and hardness (16 %) demonstrate the anisotropic nature of crystal packing. In 2 , the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C? H???N hydrogen bonds and π???π interactions. This results in a higher modulus (20 %) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 %). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2 . A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered.  相似文献   

15.
A zinc phthalocyanine endowed with four [18]‐crown‐6 moieties, ZnPcTeCr, has been prepared and self‐assembled with either pyridyl‐functionalized perylenebisimides (PDI‐Py) or fullerenes (C60‐Py) to afford a set of novel electron donor–acceptor hybrids. In the case of ZnPcTeCr, aggregation has been circumvented by the addition of potassium or rubidium ions to lead to the formation of monomers and cofacial dimers, respectively. From fluorescence titration experiments, which gave rise to mutual interactions between the electron donors and the acceptors in the excited state, the association constants of the respective ZnPcTeCr monomers and/or dimers with the corresponding electron acceptors were derived. Complementary transient‐absorption experiments not only corroborated photoinduced electron transfer from ZnPcTeCr to either PDI‐Py or C60‐Py within the electron donor–acceptor hybrids, but also the unexpected photoinduced electron transfer within ZnPcTeCr dimers. In the electron donor–acceptor hybrids, the charge‐separated‐state lifetimes were elucidated to be close to 337 ps and 3.4 ns for the two PDI‐Pys, whereas the longest lifetime for the photoactive system that contains C60‐Py was calculated to be approximately 5.1 ns.  相似文献   

16.
We describe the formation of charge‐transfer complexes that feature electron‐donating carbon nanodots (CND) and electron‐accepting perylenediimides (PDI). The functionalities of PDIs have been selected to complement those of CNDs in terms of electrostatic and π‐stacking interactions based on oppositely charged ionic head groups and extended π‐systems, respectively. Importantly, the contributions from electrostatic interactions were confirmed in reference experiments, in which stronger interactions were found for PDIs that feature positively rather than negatively charged head groups. The electronic interactions between the components in the ground and excited state were characterized in complementary absorption and fluorescence titration assays that suggest charge‐transfer interactions in both states with binding constants on the order of 8×104 M ?1 (25 L g?1). Selective excitation of the two components in ultrafast pump probe experiments gave a 210 ps lived charge‐separated state.  相似文献   

17.
Stille, Suzuki–Miyaura and Negishi cross‐coupling reactions of bromine‐functionalised borylated precursors enable the facile, high yielding, synthesis of borylated donor–acceptor materials that contain electron‐rich aromatic units and/or extended effective conjugation lengths. These materials have large Stokes shifts, low LUMO energies, small band‐gaps and significant fluorescence emission >700 nm in solution and when dispersed in a host polymer.  相似文献   

18.
Nonempirically tuned hybrid density functionals with range‐separated exchange are applied to calculations of the first hyperpolarizability (β) and charge‐transfer (CT) excitations of linear “push–pull” donor–acceptor‐substituted organic molecules with extended π‐conjugated bridges. An unphysical delocalization with increasing chain length in density functional calculations can be reduced significantly by enforcing an asymptotically correct exchange‐correlation potential adjusted to give frontier orbital energies representing ionization potentials. The delocalization error for a number of donor–acceptor systems is quantified by calculations with fractional electron numbers and from orbital localizations. Optimally tuned hybrid variants of the PBE functional incorporating range‐separated exchange can produce similar magnitudes for β as Møller–Plesset second‐order perturbation (MP2) correlated calculations. Improvements are also found for CT excitation energies, with results similar to an approximate coupled‐cluster model (CC2).  相似文献   

19.
In 2004, we reported single‐pair fluorescence resonance energy transfer (spFRET), based on a perylene diimide (PDI) and terrylene diimide (TDI) dyad ( 1 ) that was bridged by a rigid substituted para‐terphenyl spacer. Since then, several further single‐molecule‐level investigations on this specific compound have been performed. Herein, we focus on the synthesis of this dyad and the different approaches that can be employed. An optimized reaction pathway was chosen, considering the solubilities, reactivities, and accessibilities of the building blocks for each individual reaction whilst still using established synthetic techniques, including imidization, Suzuki coupling, and cyclization reactions. The key differentiating consideration in this approach to the synthesis of dyad 1 is the introduction of functional groups in a nonsymmetrical manner onto either the perylene diimide or the terrylene diimide by using imidization reactions. Combined with well‐defined purification conditions, this modified approach allows dyad 1 to be obtained in reasonable quantities in good yield.  相似文献   

20.
Studies are reported on a series of triphenylamine–(C?C)n–2,5‐diphenyl‐1,3,4‐oxadiazole dyad molecules (n=1–4, 1 , 2 , 3 and 4 , respectively) and the related triphenylamine‐C6H4–(C?C)3–oxadiazole dyad 5 . The oligoyne‐linked D–π–A (D=electron donor, A=electron acceptor) dyad systems have been synthesised by palladium‐catalysed cross‐coupling of terminal alkynyl and butadiynyl synthons with the corresponding bromoalkynyl moieties. Cyclic voltammetric studies reveal a reduction in the HOMO–LUMO gap in the series of compounds 1 – 4 as the oligoyne chain length increases, which is consistent with extended conjugation through the elongated bridges. Photophysical studies provide new insights into conjugative effects in oligoyne molecular wires. In non‐polar solvents the emission from these dyad systems has two different origins: a locally excited (LE) state, which is responsible for a π*→π fluorescence, and an intramolecular charge transfer (ICT) state, which produces charge‐transfer emission. In polar solvents the LE state emission vanishes and only ICT emission is observed. This emission displays strong solvatochromism and analysis according to the Lippert–Mataga–Oshika formalism shows significant ICT for all the luminescent compounds with high efficiency even for the longer more conjugated systems. The excited‐state properties of the dyads in non‐polar solvents vary with the extent of conjugation. For more conjugated systems a fast non‐radiative route dominates the excited‐state decay and follows the Engelman–Jortner energy gap law. The data suggest that the non‐radiative decay is driven by the weak coupling limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号