首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new NPI–BODIPY dyads 1 – 3 (NPI=1,8‐naphthalimide, BODIPY=boron‐dipyrromethene) were synthesized, characterized, and studied. The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges, and the compounds only differ structurally with respect to methyl substituents on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in molecular dyads 1 – 3 . Dyads 1–3 show dual emission in solution originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibilities of the systems. Dyads 1 – 3 , depending on their molecular flexibilities, show considerably different spectral shapes and dissimilar intensity ratios of the two emission bands. The dyads also show significant aggregation‐induced emission switching (AIES) on formation of nano‐aggregates in THF/H2O with changes in emission color from green to red. Whereas the flexible and aggregation‐prone compound 1 shows AIES, rigid systems with less favorable intermolecular interactions (i.e., 2 and 3 ) show aggregation‐induced quenching of emission. Correlations of the emission intensity and structural flexibility were found to be reversed in solution and aggregated states. Photophysical and structural investigations suggested that intermolecular interactions (e.g., π–π stacking) play a major role in controlling the emission of these compounds in the aggregated state.  相似文献   

2.
A series of symmetric and asymmetric benzo[c,d]indole‐containing aza boron dipyrromethene (aza‐BODIPY) compounds was synthesized by a titanium tetrachloride‐mediated Schiff‐base formation reaction of commercially available benzo[c,d]indole‐2(1H)‐one and heteroaromatic amines. These aza‐BODIPY analogues show different electronic structures from those of regular aza‐BODIPYs, with hypsochromic shifts of the main absorption compared to their BODIPY counterparts. In addition to the intense fluorescence in solution, asymmetric compounds exhibited solid‐state fluorescence due to significant contribution of the vibronic bands to both absorption and fluorescence as well as reduced fluorescence quenching in the aggregates. Finally, aggregation‐induced emission enhancement, which is rare in BODIPY chromophores, was achieved by introducing a nonconjugated moiety into the core structure.  相似文献   

3.
We report a series of mechanofluorochromic (MFC) compounds based on organoboron complexes with aggregation‐induced emission (AIE) characteristics. We synthesized a variety of boron ketoiminates and investigated the effect of the substituents on the optical properties by altering the end groups in the compounds. The synthesized boron ketoiminates showed AIE properties and MFC behavior. Interestingly, the hypsochromic and bathochromic shifts of the emission bands individually observed for boron ketoiminates depended on the chemical structures of the end groups. From the X‐ray diffraction and differential scanning calorimetry analyses, it was confirmed that the MFC property of boron ketoiminates should be derived from a phase transition between crystalline and amorphous states. In addition, the direction of the peak shifts of the emission bands was controlled by the degree of steric hindrance of the end group.  相似文献   

4.
Formation of J aggregates, that is, one‐dimensional supramolecular self‐organizations in which the transition moments of individual molecules are aligned parallel to the line joining their centers through a “head‐to‐tail” arrangement, normally proceed via electrostatic interactions between oppositely charged molecular groups; this is facilitated by an electrolyte medium. Here, we show that J aggregates of thiamonomethinecyanine dyes in a solution can be assembled from dye dimers by illuminating the solution with light of the appropriate wavelength to induce excitation of the dye dimers. The reverse process is also demonstrated by application of light of the correct wavelength to induce excitation of the J aggregates. Our results indicate that spontaneous J aggregation in the dark and formation of J aggregates through illumination proceed through different mechanisms; the former resulting in an increase in the number of the aggregates and the latter in an increase in the size of the aggregates.  相似文献   

5.
The aggregation‐induced emission (AIE) properties of two different copper iodide clusters have been studied. These two [Cu4I4L4] clusters differ by their coordinated phosphine ligand and the luminescent mechanochromic properties are only displayed by one of them. The two clusters are AIE‐active luminophors that exhibit an intense emission in the visible region upon aggregation. The formed particles present luminescent thermochromism comparable to that of the bulk compounds. The observed AIE properties can be attributed to suppression of nonradiative relaxation of the excited states in a more rigid state, in relation to the large structural relaxation of the excited triplet state. The differences observed in the AIE properties of the two clusters can be related to the different ligands. A correlation between the luminescence mechanochromic properties and the AIE effect is not straightforward, but the formation of “soft” molecular solids is a common characteristic that can explain the photoactive properties of these compounds.  相似文献   

6.
Aggregation‐induced emission (AIE) has attracted considerable interest over the last twenty years. In contrast to the large number of available reviews focusing specifically on AIE, this Essay discusses the AIE phenomenon from a broader perspective, with an emphasis on early observations related to AIE made long before the term was coined. Illustrative examples are highlighted from the 20th century where fluorescence enhancement upon rigidification of dyes in viscous or solid environments or J‐aggregate formation was studied. It is shown that these examples already include typical AIE luminogens such as tetraphenylethylene (TPE) as well as stilbenes and oligo‐ or polyphenylenevinylenes and ‐ethynylenes, which became important fluorescent solid‐state materials in OLED research in the 1990s. Further examples include cyanine dyes such as thiazole orange (TO) or its dimers (TOTOs), which have been widely applied as molecular probes in nucleic acid research. The up to 10 000‐fold fluorescence enhancement of such dyes upon intercalation into double‐stranded DNA, attributable to the restricted intramolecular motion (RIM) concept, afforded commercial products for bioimaging and fluorescence sensing applications already in the early 1990s.  相似文献   

7.
A novel molecular design strategy is provided to rationally tune the stimuli response of luminescent materials with aggregation‐induced emission (AIE) characteristics. A series of new AIE‐active molecules (AIE rotors) are prepared by covalently linking different numbers of tetraphenylethene moieties together. Upon gradually increasing the number of rotatable phenyl rings, the sensitivity of the response of the AIE rotors to viscosity and temperature is significantly enhanced. Although the molecular size is further enlarged, the performance is only slightly improved due to slightly increased effective rotors, but with largely increased rotational barriers. Such molecular engineering and experimental results offer more in‐depth insight into the AIE mechanism, namely, restriction of intramolecular rotations. Notably, through this rational design, the AIE rotor with the largest molecular size turns out to be the most viscosensitive luminogen with a viscosity factor of up to 0.98.  相似文献   

8.
1‐Cyano‐1,2‐bis(biphenyl)ethene (CNBE) derivatives with a hexa(ethylene glycol) group as an amphiphilic side chain were synthesized and the self‐assembling character and fluorescence behavior were investigated. The amphiphilic derivatives showed aggregate‐induced enhanced emission (AIEE) in water and in the solid state. The fluorescence quantum yield increased as the rigidity of the aggregates increased (i.e., in ethyl acetate<in water<in the solid state). As determined from measurements of fluorescence spectra, fluorescence quantum yields, and fluorescence lifetimes, a key factor for the enhanced emission is suppression of the nonradiative decay process arising from restricted molecular motion. Additionally, the difference in the emission rate constant is not negligible and can be used to interpret the difference in fluorescence quantum yield in water and in the solid state.  相似文献   

9.
A tetraphenylethene (TPE) derivative substituted with a sulfonyl‐based naphthalimide unit ( TPE‐Np ) was designed and synthesized. Its optical properties in solution and in the solid state were investigated. Photophysical properties indicated that the target molecule, TPE‐Np , possessed aggregation‐induced emission (AIE) behavior, although the linkage between TPE and the naphthalimide unit was nonconjugated. Additionally, it exhibited an unexpected, highly reversible mechanochromism in the solid state, which was attributed to the change in manner of aggregation between crystalline and amorphous states. On the other hand, a solution of TPE‐Np in a mixture of dimethyl sulfoxide/phosphate‐buffered saline was capable of efficiently distinguishing glutathione (GSH) from cysteine and homocysteine in the presence of cetyltrimethylammonium bromide. Furthermore, the strategy of using poly(ethylene glycol)–polyethylenimine (PEG‐PEI) nanogel as a carrier to cross‐link TPE‐Np to obtain a water‐soluble PEG‐PEI/ TPE‐Np nanoprobe greatly improved the biocompatibility, and this nanoprobe could be successfully applied in the visualization of GSH levels in living cells.  相似文献   

10.
The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor–acceptor system. In this respect, a series of donor–acceptor architectures of 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor–acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation‐induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo‐Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non‐emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy‐transfer processes, namely, FRET and DRET, in one polarity‐sensitive donor–acceptor pair system. The accuracy of the dark‐emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena.  相似文献   

11.
A series of novel AIE‐active (aggregation‐induced emission) molecules, named SAF‐2‐TriPE, SAF‐3‐TriPE, and SAF‐4‐TriPE, were designed and synthesized through facile reaction procedures. We found that incorporation of the spiro‐acridine‐fluorene (SAF) group, which is famous for its excellent hole‐transporting ability and rigid structure, at different substitution positions on the phenyl ring affected the conjugation lengths of these compounds. Consequently, we have obtained molecules with different emission colors and properties without sacrificing good EL (electroluminescence) characteristics. Accordingly, a device that was based on compound SAF‐2‐TriPE displayed superior EL characteristics: it emitted green light with ηc, max=10.5 cd A?1 and ηext, max=4.22 %, whereas a device that was based on compound SAF‐3‐TriPE emitted blue‐green light with ηc, max=3.9 cd A?1 and ηext, max= 1.71 %. These compounds also displayed different AIE performances: when the fraction of water in the THF solutions of these compounds was increased, we observed a significant improvement in the ΦF of compounds SAF‐2‐TriPE and SAF‐3‐TriPE; in contrast, compound SAF‐4‐TriPE showed an abnormal phenomenon, in that it emitted a strong fluorescence in both pure THF solution and in the aggregated state without a significant change in ΦF. Overall, this systematic study confirmed a relationship between the regioisomerism of the luminophore structure and its AIE activity and the resulting electroluminescent performance in non‐doped devices.  相似文献   

12.
A mechanochromic luminescent dye based on a simple aminomaleimide skeleton was readily synthesized in a one‐pot process. It exhibited an on/off mechanochromic luminescent switching property dependent on external stimuli, unlike a traditional mechanochromic color change. The green emission was turned on by grinding in a mortar and turned off by heating or treatment with dichloromethane. In the crystalline state, two molecules were stacked by cofacial π–π interactions, which caused concentration self‐quenching. The crystalline‐to‐amorphous transition induced by grinding removed cofacial π–π stacking, which led to intensive emission. Crystallizing processes recovered the cofacial π–π stacking, resulting in elimination of the emission. Theoretical calculations and X‐ray diffraction analyses revealed that the dye molecule was distorted in the crystalline state; thus even a mechanical stimulus caused the crystalline‐to‐amorphous transition.  相似文献   

13.
A series of boron ketoiminate derivatives that exhibited clear aggregation‐induced emission (AIE) characteristics (in THF: ΦPL≤0.01; in the solid state: ΦPL=0.30–0.76) were prepared by the reactions of 1,3‐enaminoketone derivatives with boron trifluoride–diethyl etherate. The structures and optical properties were investigated by UV‐visible spectroscopy, photoluminescent (PL) spectroscopy, and X‐ray single‐crystal measurements. These results indicate that the AIE characteristics were derived from molecular motions of the boron‐chelating rings with a boron? nitrogen (B? N) bond. Furthermore, the optical properties were controllable by steric hindrance of the substituted groups on the nitrogen atom.  相似文献   

14.
Aggregation‐induced emission combined with aggregation‐promoted photo‐oxidation has been reported only in two works quite recently. In fact, this phenomenon is not commonly observed for AIE‐active molecules. In this work, a new tetraphenylethylene derivative (TPE‐4T) with aggregation‐induced emission (AIE) and aggregation‐promoted photo‐oxidation was synthesized and investigated. The pristine TPE‐4T film exhibits strong bluish‐green emission, which turns to quite weak yellow emission after UV irradiation. Interestingly, after solvent treatment, the weakly fluorescent intermediate will become bright‐yellow emitting. Moreover, the morphology of the TPE‐4T film could be regulated by UV irradiation. The wettability of the TPE‐4T microcrystalline surface is drastically changed from hydrophobic to hydrophilic. This work contributes a new member to the aggregation induced photo‐oxidation family and enriches the photo‐oxidation study of tetraphenylethylene derivatives.  相似文献   

15.
A broad series of more than 20 acceptor‐substituted squaraines was synthesized that feature different acceptor functionalities at the central squaraine four‐membered ring. The influence of these acceptor units on the reactivity of semisquaraine precursors and stability of the respective squaraines were explored. Thereby the dicyanovinyl group was found to be the most versatile acceptor group that enabled various modifications at the donor moiety of the squaraine scaffold, leading to an extended series of dicyanovinyl‐functionalized squaraines. The variation of donor units afforded a set of NIR fluorophores that cover a wavelength region from the visible at about 650 nm far into the NIR up to 920 nm with fluorescence quantum yields between 0.93 and 0.11 and outstanding optical brightness. This excellent optical property is related to a rigid molecular scaffold that is fixed in an all‐cis configuration by the additional dicyanovinyl acceptor unit. The change of the molecular symmetry from C2h to C2v upon functionalization of the squaraine core with dicyanovinyl acceptor group has been confirmed in solution by electro‐optical absorption (EOA) spectroscopy, revealing permanent ground‐state dipole moments μg in the range between 4.3 and 6.4 D. These dipole moments direct an antiparallel packing of the molecules in the solid state according to single‐crystal X‐ray analyses achieved for four dicyanovinyl‐functionalized squaraines. The structural properties, the EOA results, as well as the band shapes of the optical spectra indicate that these polymethine dyes are cyanine‐type chromophores. It is worth noting that the orientation of the dipole moment vectors is orthogonal to the orientation of the transition dipole moment vectors, which is an uncommon but characteristic feature of this rather novel class of polymethine dyes. With regard to applications of these dyes in organic solar cells, their redox properties were also studied by cyclic voltammetry.  相似文献   

16.
The deciphering of structure–property relationships is of high importance to rational design of functional molecules and to explore their potential applications. In this work, a series of silole derivatives substituted with benzo[b]thiophene (BT) at the 2,5‐positions of the silole ring are synthesized and characterized. The experimental investigation reveals that the covalent bonding through the 2‐position of BT (2‐BT) with silole ring allows a better conjugation of the backbone than that achieved though the 5‐position of BT (5‐BT), and results in totally different emission behaviors. The silole derivatives with 5‐BT groups are weakly fluorescent in solutions, but are induced to emit intensely in aggregates, presenting excellent aggregation‐induced emission (AIE) characteristics. Those with 2‐BT groups can fluoresce more strongly in solutions, but no obvious emission enhancements are found in aggregates, suggesting they are not AIE‐active. Theoretical calculations disclose that the good conjugation lowers the rotational motions of BT groups, which enables the molecules to emit more efficiently in solutions. But the well‐conjugated planar backbone is prone to form strong intermoelcular interactions in aggregates, which decreases the emission efficiency. Non‐doped organic light‐emitting diodes (OLEDs) are fabricated by using these siloles as emitters. AIE‐active silole derivatives show much better elecroluminescence properties than those without the AIE characterisic, demonstrating the advantage of AIE‐active emitters in OLED applications.  相似文献   

17.
The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.  相似文献   

18.
A series of simple phenothiazine‐based dyes, namely, TP , EP , TTP , ETP , and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye‐sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc=15.2 mA cm?2, Voc=0.783 V, fill factor (FF)=0.679) and 7.87 % (Jsc=16.1 mA cm?2, Voc=0.717 V, FF=0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I?/I3? redox couple. By replacing the T group with the E unit, EP ‐based DSSCs had a slightly lower PCE of 7.98 % with a higher short‐circuit photocurrent (Jsc) of 16.7 mA cm?2. The dye ETP , with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP , with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.  相似文献   

19.
Photoactivatable (caged) fluorophores are widely used in chemistry, materials, and biology. However, the development of such molecules exhibiting photoactivable solid‐state fluorescence is still challenging due to the aggregation‐caused quenching (ACQ) effect of most fluorophores in their aggregate or solid states. In this work, we developed caged salicylaldehyde hydrazone derivatives, which are of aggregation‐induced emission (AIE) characteristics upon light irradiation, as efficient photoactivatable solid‐state fluorophores. These compounds displayed multiple‐color emissions and ratiometric (photochromic) fluorescence switches upon wavelength‐selective photoactivation, and were successfully applied for photopatterning and photoactivatable cell imaging in a multiple‐color and stepwise manner.  相似文献   

20.
Aggregation‐induced emission luminogens (AIEgens) are a new class of luminophors, which are non‐emissive in solution, but emit intensively upon aggregation. By properly designing the chemical structures of the AIEgens, their aggregation process can be tuned towards a desired direction to give diverse novel luminescent architectures of micelles, rods, and helical fibers. AIEgens represent a kind of promising building block for the fabrication of luminescent micro/nanostructures with controllable morphologies. In this review, we describe our recent work in this research area, focusing on the molecular design, circularly polarized luminescence properties, and helical self‐assembly behavior of AIEgens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号