The donor‐stabilized silylene [iPrNC(NiPr2)NiPr]2Si ( 2 ) reacts with PhEl?ElPh (El=S, Se) to form the respective cationic five‐coordinate bis(guanidinato)silicon(IV) complexes {[iPrNC(NiPr2)NiPr]2SiSPh}+PhS? ( 4 ) and {[iPrNC (NiPr2)NiPr]2SiSePh}+PhSe? ( 5 ). Compounds 4 and 5 were characterized by crystal structure analyses and NMR spectroscopic studies in the solid state. 相似文献
The first silicon analogues of carbonic (carboxylic) esters, the silanoic thio‐, seleno‐, and tellurosilylesters 3 (Si?S), 4 (Si?Se), and 5 (Si?Te), were prepared and isolated in crystalline form in high yield. These thermally robust compounds are easily accessible by direct reaction of the stable siloxysilylene L(Si:)OSi(H)L′ 2 (L=HC(CMe)2[N(aryl)2], L′=CH[(C?CH2)‐CMe][N(aryl)]2; aryl=2,6‐iPr2C6H3) with the respective elemental chalcogen. The novel compounds were fully characterized by methods including multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Owing to intramolecular N→Si donor–acceptor support of the Si?X moieties (X=S, Se, Te), these compounds have a classical valence‐bond N+–Si–X? resonance betaine structure. At the same time, they also display a relatively strong nonclassical Si?X π‐bonding interaction between the chalcogen lone‐pair electrons (nπ donor orbitals) and two antibonding Si? N orbitals (σ*π acceptor orbitals mainly located at silicon), which was shown by IR and UV/Vis spectroscopy. Accordingly, the Si?X bonds in the chalcogenoesters are 7.4 ( 3 ), 6.7 ( 4 ), and 6.9 % ( 5 ) shorter than the corresponding Si? X single bonds and, thus, only a little longer than those in electronically less disturbed Si?X systems (“heavier” ketones). 相似文献
The neutral pentacoordinate silicon(IV) complexes 1 (SiS2ONC skeleton), 2 (SiSeSONC), 3 (SiTeSONC), 6 / 9 (SiSe2O2C), 7 (SiSe2S2C), and 8 / 10 (SiSe4C) were synthesized and structurally characterized by using single‐crystal X‐ray diffraction and multinuclear solid‐state and solution‐state (except for 6 – 9 ) NMR spectroscopy. With the synthesis of compounds 1 – 3 and 6 – 10 , it has been demonstrated that pentacoordinate silicon compounds with soft chalcogen ligand atoms (S, Se, Te) can be stable in the solid state and in solution. 相似文献
Reaction of the arylchlorosilylene‐NHC adduct ArSi(NHC)Cl [Ar=2,6‐Trip2C6H3; NHC=(MeC)2(NMe)2C:] 1 with one molar equiv of lithium diphenylphosphanide affords the first stable NHC‐stabilized acyclic phosphinosilylene adduct 2 (ArSi(NHC)PPh2), which could be structurally characterized. Compound 2 , when reacted with one molar equiv selenium and sulfur, affords the silanechalcogenones 4 a and 4 b (ArSi(NHC)(?E)PPh2, 4 a : E=Se, 4 b : E=S), respectively. Conversion of 2 with an excess of Se and S, through additional insertion of one chalcogen atom into the Si?P bond, leads to 3 a and 3 b (ArSi(NHC)(?E)‐E‐P(?E)Ph2, 3 a : E=Se, 3 b : E=S), respectively. Additionally, the exposure of 2 to N2O or CO2 yielded the isolable NHC‐stabilized silanone 4 c , Ar(NHC)(Ph2P)Si?O. 相似文献
An experimental and theoretical study of the first compound featuring a Si?P bond to a two‐coordinate silicon atom is reported. The NHC‐stabilized phosphasilenylidene (IDipp)Si?PMes* (IDipp=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene, Mes*=2,4,6‐tBu3C6H2) was prepared by SiMe3Cl elimination from SiCl2(IDipp) and LiP(Mes*)SiMe3 and characterized by X‐ray crystallography, NMR spectroscopy, cyclic voltammetry, and UV/Vis spectroscopy. It has a planar trans‐bent geometry with a short Si? P distance of 2.1188(7) Å and acute bonding angles at Si (96.90(6)°) and P (95.38(6)°). The bonding parameters indicate the presence of a Si?P bond with a lone electron pair of high s‐character at Si and P, in agreement with natural bond orbital (NBO) analysis. Comparative cyclic voltammetric and UV/Vis spectroscopic experiments of this compound, the disilicon(0) compound (IDipp)Si?Si(IDipp), and the diphosphene Mes*P?PMes* reveal, in combination with quantum chemical calculations, the isolobal relationship of the three double‐bond systems. 相似文献
The synthesis and comprehensive characterization of a series of base‐stabilized ChX2 (Ch=Se, Te; X=Cl, Br) is reported using aryl‐substituted diazabutadiene and 2,2′‐bipyridine (bipy) as the ligands. In stark contrast to free ChX2 the complexes display excellent thermal stability. Their use as viable ChX2 reagents that may be stored for later use is demonstrated in principle. The syntheses are simple and high‐yielding from commercially available or easily synthesized reagents. The bipy complexes are exceedingly rare examples of this ubiquitous ligand being utilized within Group 16 chemistry; the Se examples are the first to be characterized by X‐ray crystallography, and the Te species are only the second. 相似文献
The donor‐stabilized silylene 2 (the first bis(guanidinato)silicon(II ) complex) reacts with the transition‐metal carbonyl complexes [M(CO)6] (M=Cr, Mo, W) to form the respective silylene complexes 7 – 10 . In the reactions with [M(CO)6] (M=Cr, Mo, W), the bis(guanidinato)silicon(II ) complex 2 behaves totally different compared with the analogous bis(amidinato)silicon(II ) complex 1 , which reacts with [M(CO)6] as a nucleophile to replace only one of the six carbonyl groups. In contrast, the reaction of 2 leads to the novel spirocyclic compounds 7 – 9 that contain a four‐membered SiN2C ring and a five‐membered MSiN2C ring with a M?Si and M?N bond (nucleophilic substitution of two carbonyl groups). Compounds 7 – 10 were characterized by elemental analyses (C, H, N), crystal structure analyses, and NMR spectroscopic studies in the solid state and in solution. 相似文献
The reactions of Me2MCl2 (M = Si, Ge, Sn), Si2Me4Cl2, Si2Me2Cl3, Si2Me2Cl4 and CH2(SiCl2Me)2, and suitable mixtures thereof, with H2S / NEt3 and Li2E (E = Se, Te) have been investigated and lead to a variety of new group 14 chalcogenide systems. 相似文献
A theoretical study of the HTeXH (X=O, S, Se and Te) monomers and homodimers was carried out by means of second‐order Møller‐Plesset perturbation theory (MP2) computational methods. In the case of monomers, the isomerization energy from HTeXH to H2Te=X and H2X=Te (X=O, S, Se, and Te) and the rotational transition‐state barriers were obtained. Due to the chiral nature of these compounds, homo and heterochiral dimers were found. The electron density of the complexes was characterized with the atoms‐in‐molecules (AIM) methodology, finding a large variety of interactions. The charge transfer within the dimers was analyzed by means of natural bond orbitals (NBO). The density functional theory‐symmetry adapted perturbation theory (DFT‐SAPT) method was used to compute the components of the interaction energies. Hydrogen bonds and chalcogen–chalcogen interactions were characterized and their influence analyzed concerning the stability and chiral discrimination of the dimers. 相似文献
A series of N‐heterocyclic carbene‐stabilized silanechalcogenones 2 a , b (Si?O), 3 a , b (Si?S), 4 a , b (Si?Se), and 5 a , b (Si?Te) are described. The silanone complexes 2 a , b were prepared by facile oxygenation of the carbene–silylene adducts 1 a , b with N2O, whereas their heavier congeners were synthesized by gentle chalcogenation of 1 a , b with equimolar amounts of elemental sulfur, selenium, and tellurium, respectively. These novel compounds have been isolated in a crystalline form in high yields and have been fully characterized by a variety of techniques including IR spectroscopy, ESIMS, and multinuclear NMR spectroscopy. The structures of 2 b , 3 a , 4 a , 4 b , and 5 b have been confirmed by single‐crystal X‐ray crystallography. Due to the NHC→Si donor–acceptor electronic interaction, the Si?E (E=O, S, Se, Te) moieties within these compounds are well stabilized and thus the compounds possess several ylide‐like resonance structures. Nevertheless, these species also exhibit considerable Si?E double‐bond character, presumably through a nonclassical Si?E π‐bonding interaction between the chalcogen lone‐pair electrons and two antibonding Si? N σ* orbitals, as evidenced by their high stretching vibration modes and the shortening of the Si–E distances (between 5.4 and 6.3 %) compared with the corresponding Si? E single‐bond lengths. 相似文献
Si takes a rest : A bulky σ‐bound terphenyl substituent and a π‐bound Cp* ligand enable the isolation and full characterization of the first aryl‐substituted, monomeric silicon(II) compound 1 , which can be regarded as the “resting state” of a true silylene containing a σ‐bound Cp* group. The conformation of the aryl group prevents aryl–Si π back‐bonding.
While exploring the chemistry of tellurium‐containing dichalcogenidoimidodiphosphinate ligands, the first all‐tellurium member of a series of related square‐planar EII(E′)4 complexes (E and E′ are group 16 elements), namely bis(P,P,P′,P′‐tetraphenylditelluridoimidodiphosphinato‐κ2Te,Te′)tellurium(II) (systematic name: 2,2,4,4,8,8,10,10‐octaphenyl‐1λ3,5,6λ4,7λ3,11‐pentatellura‐3,9‐diaza‐2λ5,4λ5,8λ5,10λ5‐tetraphosphaspiro[5.5]undeca‐1,3,7,9‐tetraene), C48H40N2P4Te5, was obtained unexpectedly. The formally TeII centre is situated on a crystallographic inversion centre and is Te,Te′‐chelated to two anionic [(TePPh2)2N]− ligands in an anti conformation. The central TeII(Te)4 unit is approximately square planar [Te—Te—Te = 93.51 (3) and 86.49 (3)°], with Te—Te bond lengths of 2.9806 (6) and 2.9978 (9) Å. 相似文献
As a part of efforts to prepare new “metallachalcogenolate” precursors and develop their chemistry for the formation of ternary mixed‐metal chalcogenide nanoclusters, two sets of thermally stable, N‐heterocyclic carbene metal–chalcogenolate complexes of the general formula [(IPr)Ag?ESiMe3] (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene; E=S, 1 ; Se, 2 ) and [(iPr2‐bimy)Cu?ESiMe3]2 (iPr2‐bimy=1,3‐diisopropylbenzimidazolin‐2‐ylidene; E=S, 4 ; Se, 5 ) are reported. These are prepared from the reaction between the corresponding carbene metal acetate, [(IPr)AgOAc] and [(iPr‐bimy)CuOAc] respectively, and E(SiMe3)2 at low temperature. The reaction of [(IPr)Ag?ESiMe3] 1 with mercury(II) acetate affords the heterometallic complex [{(IPr)AgS}2Hg] 3 containing two (IPr)Ag?S? fragments bonded to a central HgII, representing a mixed mercury–silver sulfide complex. The reaction of [(iPr2‐bimy)Cu‐SSiMe3]2, which contains a smaller N‐heterocyclic‐carbene, with mercuric(II) acetate affords the high nuclearity cluster, [(iPr2‐bimy)6Cu10S8Hg3] 6 . The new N‐heterocyclic carbene metal–chalcogenolate complexes 1 , 2 , 4 , 5 and the ternary mixed‐metal chalcogenolate complex 3 and cluster 6 have been characterized by multinuclear NMR spectroscopy (1H and 13C), elemental analysis and single‐crystal X‐ray diffraction. 相似文献
In contrast to the well‐established chemistry of ketones (R2C?O), the reactivity of the elusive heavier congeners R2E?O (E=Si, Ge, Sn, Pb) is far less explored because of the high polarity of the E?O bonds and hence their tendency to oligomerize with no activation barrier. Very recently, great advances have been achieved in the synthesis of isolable compounds with E?O bonds, including the investigation of donor‐stabilized isolable silanones and the first stable “genuine” germanone. These compounds show drastically different reactivities compared to ketones and represent versatile building blocks in silicon–oxygen and germanium–oxygen chemistry. This and other exciting achievements are described in this Minireview. 相似文献