首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A concise and efficient synthesis of (?)‐gephyrotoxin from L ‐pyroglutaminol has been realized. The key step in this approach is a diastereoselective intramolecular enamine/Michael cascade reaction that forms two rings and two stereocenters and generates a stable tricyclic iminium cation. A hydroxy‐directed reduction of this intermediate plays a key role in establishing the required cis‐decahydroquinoline ring system, enabling the total synthesis of (?)‐gephyrotoxin in nine steps and 14 % overall yield. The absolute configuration of the synthetic material was confirmed by single‐crystal X‐ray diffraction and is consistent with the structure originally proposed for material isolated from the natural source.  相似文献   

2.
Summary.  Using tetra-O-pivaloyl-β-D-galactopyranosylamine as the chiral auxiliary, both trans- and cis-annelated decahydroquinoline alkaloids can be synthesized stereoselectively. This methodology of asymmetric synthesis is based on the effect that both enantiomers of 2,6-disubstituted piperidin-4-ones are selectively and alternatively accessible using the auxiliary as the identical stereodifferentiating tool. In addition, the carbohydrate auxiliary controls the stereoselective protonation of enolates formed by conjugate addition of cuprates to N-galactosyl octahydroquinolin-4-ones. The syntheses of trans-4a-epi-pumiliotoxin C and cis-4a-epi-perhydro-219A illustrate this concept of asymmetric synthesis of decahydroquinoline alkaloids. Received September 7, 2001. Accepted October 16, 2001  相似文献   

3.
The synthesis of a protected dephosphofostriecin, and thereby a formal synthesis of fostriecin, has been accomplished. The synthetic challenges were the construction of four stereogenic centers and the conformationally labile ciscistrans‐triene moiety. Previous total syntheses have employed at least two asymmetric reactions that required the use of an external chiral auxiliary. Although remote stereoinduction in a 1,4‐relationship is considered difficult, we have developed a notable 1,4‐asymmetric induction that utilizes an alkyne–cobalt complex for the control of C5 stereochemistry by the C8 stereogenic center. The stereochemistry at C11 was established by 1,3‐asymmetric induction with a higher‐order alkynyl‐zinc reagent. Thus, only one asymmetric reaction requiring an external chiral auxiliary was employed in this route. The labile ciscistrans‐triene unit was constructed at a late stage of the synthesis by diastereoselective coupling of a dienyne and an aldehyde unit, followed by reduction.  相似文献   

4.
cis‐2,6‐Tetrahydropyran is an important structural skeleton of bioactive natural products. A facile synthesis of cis‐2,6‐disubstituted‐3,6‐dihydropyrans as cis‐2,6‐tetrahydropyran precursors has been achieved in high regio‐ and stereoselectivity with high yields. This reaction involves a palladium‐catalyzed decarboxylative allylation of various 3,4‐dihydro‐2H‐pyran substrates. Extending this reaction to 1,2‐unsaturated carbohydrates allowed the achievement of challenging β‐C‐glycosylation. Based on this methodology, the total syntheses of (±)‐centrolobine and (+)‐decytospolides A and B were achieved in concise steps and overall high yields.  相似文献   

5.
The enantioselective total synthesis of the rearranged spongian diterpenoid (?)‐macfarlandin C is reported. This is the first synthesis of a rearranged spongian diterpenoid in which the bulky hydrocarbon fragment is joined via a quaternary carbon to the highly hindered concave face of the cis‐2,8‐dioxabicyclo[3.3.0]octan‐3‐one moiety. The strategy involves a late‐stage fragment coupling between a tertiary carbon radical and an electrophilic butenolide resulting in the stereoselective formation of vicinal quaternary and tertiary stereocenters. A stereoselective Mukaiyama hydration that orients a pendant carboxymethyl side chain cis to the bulky octahydronapthalene substituent was pivotal in fashioning the challenging concave‐substituted cis‐dioxabicyclo[3.3.0]octanone fragment.  相似文献   

6.
A simple, efficient synthesis is reported for (?)‐cis‐α‐ and (?)‐cis‐γ‐irone, two precious constituents of iris oils, in ≥99 % diastereomeric and enantioselective ratios. The two routes diverge from a common intermediate prepared from (?)‐epoxygeraniol. Of general interest in this approach is the installation of the enone moiety of irones through a NHC?AuI‐catalyzed Meyer–Schuster‐like rearrangement of a propargylic benzoate and the use of Wilkinson’s catalyst for the stereoselective hydrogenation of a prostereogenic exocyclic double bond to secure the critical cis stereochemistry of the alkyl groups at C2 and C6 of the irones. The stereochemical aspects of this reaction are rationally supported by DFT calculation of the conformers of the substrates undergoing the hydrogenation and by a modeling study of the geometry of the rhodium η2 complexes involved in the diastereodifferentiation of the double bond faces. Thus, computational investigation of the η2 intermediates formed in the catalytic cycle of prostereogenic alkene hydrogenation by using Wilkinson’s catalyst could be highly predictive of the stereochemistry of the products.  相似文献   

7.
4‐Substituted tryptophan derivatives and the total synthesis of cis‐clavicipitic acid were achieved in reactions in which Ir‐catalyzed C?H bond activation was a key step. The starting material for these reactions is asparagine, which is a cheap natural amino acid. The reductive amination step from the 4‐substituted tryptophan derivative gave cis‐clavicipitic acid with perfect diastereoselectivity.  相似文献   

8.
Substrate‐controlled asymmetric total syntheses of (+)‐microcladallenes A, B, and C have been accomplished based on the proposed structures. The syntheses of microcladallenes A and B confirmed the structures and absolute configurations of both natural products. However, the synthesis of microcladallene C, which includes seven stereogenic centers and an (R)‐bromoallene in its compact C15 framework, brought the realization that its proposed structure must be revised. The introduction of C12‐bromine into these natural products with retention of configuration relied on TiBr4‐mediated nucleophile‐assisting leaving group brominations, the stereochemical outcome of which could be attributed, at least in part, to an oxonium or halonium ion formation–fragmentation sequence through intricate neighboring group participation. In addition, the pivotal β‐oriented vicinal cis‐dichloride function in microcladallene C was elaborated through a novel tandem Cl2‐induced electrophilic cyclization/imidate chlorination process. The positive rotations of these natural products with an (R)‐bromoallene constitute exceptions to Lowe’s rule for reasons yet to be determined.  相似文献   

9.
Three types of bi‐functionalized copolymers ( P1FAz , P2FAz , and P3FAz ) with different numbers of fluorene units and an azobenzene unit were synthesized and characterized using UV–vis and polarized absorption spectroanalysis. The trans‐cis photoisomerization was conformed under 400 nm light irradiation for all copolymers in chloroform. However, in the film state, only the transcis photoisomerization occurred by mono‐fluorene attached copolymer poly[(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl)‐alt‐4,4′‐azobenzene)] ( P1FAz ). Photo‐induced alignment was achieved using the P1FAz film after irradiation with linear polarized 400 nm light and subsequent annealing at 60 °C. Surface orientation of a spin‐coating film of poly(9,9‐didodecylfluorene) ( F12 ) was achieved using the photo‐induced alignment layer of the P1FAz film after annealing at 90 °C. The photo‐induced alignment layer of P1FAz has potential application to the surface orientation technique for appropriate polymers, which will be useful for the fabrication of optoelectronics devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Several syntheses have already been reported for cis‐trikentrins and herbindoles, which are indole alkaloids unsubstituted at the C2 and C3 positions that bear a trans‐1,3‐dimethylcyclopentyl unit. Herein, we describe the first asymmetric and stereoselective synthesis of the more challenging trans‐trikentrin A as its naturally occurring isomer. Different approaches were investigated and the strategy of choice was a combination of an enzymatic kinetic resolution and a thallium(III)‐mediated ring contraction. The antiproliferative activities of the natural product and related intermediates have been tested against human tumor cell lines, leading to the discovery of new compounds with potent antitumor activity.  相似文献   

11.
Chiral Ti salalen complexes catalyze the asymmetric epoxidation of terminal non‐conjugated olefins with hydrogen peroxide. Modular ligands based on cis‐1,2‐diamino‐cyclohexane (cis‐DACH) were developed, giving high yields and enantiomeric excesses (ee, up to 96 %) at catalyst loadings as low as 0.1–0.5 mol %, and even under solvent‐free conditions.  相似文献   

12.
The first total synthesis of phacelocarpus 2‐pyrone A is reported. The original natural compound was tentatively assigned (by NMR spectroscopy) as containing two cis‐alkenes and a trans‐vinyl ether connected to a 2‐pyrone ring motif. Our computational predictions indicated that a cis‐vinyl ether motif was equally feasible. Attempts to prepare the trans‐vinyl ether were met with no success. The all cis‐target compound was synthesised in nine steps, employing key regio‐ and stereoselective reactions including AuI‐catalysed vinyl etherification, Wittig alkenylation and end‐game Stille macrocyclisation. Analysis of the NMR data enabled identification and confirmation of the correct structure of phacelocarpus 2‐pyrone A, containing a cis‐vinyl ether. Our studies pave the way for future development of methodologies to these structurally distinct pyrone skipped‐polyenyne natural products.  相似文献   

13.
A number of different complexation structures of cis‐1,4‐dihydro‐1,4‐dimethyl‐2,3,5,6‐tetrakis(t‐butoxycarbonyl)‐1,4‐diarsinine (cis‐DHDAtBu) with gold(I) and iridium(III) were synthesized and characterized by 1H, 13C NMR spectra, X‐ray crystallography, and elemental analysis. Mono‐ and di‐nuclear gold(I) chloride complexes with cis‐DHDAtBu were obtained by simple addition of gold(I) chloride to cis‐DHDAtBu. A hetero‐trinuclear gold‐platinum‐gold complex (PtAu2Cl4(cis‐DHDAtBu)2) was obtained by complexation of a mononuclear platinum(II) complex (trans‐PtCl2(cis‐DHDAtBu)2), which was obtained by complexation of cis‐DHDAtBu with a half‐equimolar amount of PtCl2(PhCN)2, with a twice‐equimolar amount of gold(I) chloride. An iridium(III) complex with cis‐DHDAtBu (IrCl3(cis‐DHDAtBu)2) was prepared from hydrated iridium(III) chloride and cis‐DHDAtBu. The complex comprises a five‐membered chelate cis‐DHDAtBu and an usual monodentate cis‐DHDAtBu. The interior angles at around the arsenic and the As–C—C bond angles were significantly varied from 113.4° to 129.4° in the present crystal. These observations suggest that the flexibility of the bond angles at around the arsenic center is inherent property in the present organoarsenic compounds. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 23:16–26, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20747  相似文献   

14.
An intramolecular, organocatalyzed Michael addition has been developed to obtain biologically important 2,3‐disubstituted cis‐2,3‐dihydrobenzofurans. By using mandelic acid salts of primary aminocatalysts, derived from cinchona alkaloids, the intramolecular cyclization reaction has been developed to proceed in high yield, with moderate to good diastereoselectivity, and up to 99 % ee. Based on the absolute configuration of the formed 2,3‐disubstituted‐cis‐2,3‐dihydrobenzofurans and by considering the observed substrate scope restrictions, a mechanistic rationalization has been presented.  相似文献   

15.
Hydrogallation Reactions Involving the Monoalkynes H5C6‐C≡C‐SiMe3 and H5C6‐C≡C‐CMe3cis/trans Isomerisation and Substituent Exchange Phenyl‐trimethylsilylethyne, H5C6‐C≡C‐SiMe3, reacted with different dialkylgallium hydrides, R2Ga‐H (R = Me, Et, nPr, iPr, tBu), by the addition of one Ga‐H bond to its C≡C triple bond (hydrogallation). The gallium atoms attacked selectively those carbon atoms, which were also attached to trimethylsilyl groups. The cis arrangement of Ga and H across the resulting C=C double bonds resulted only for the sterically most shielded di(tert‐butyl)gallium derivative, while in all other cases spontaneous cis/trans rearrangement occurred with the quantitative formation of the trans addition products. The diethyl compound Et2Ga‐C(SiMe3)=C(H)‐C6H5 ( 2 ) gave by substituent exchange the secondary products EtGa[C(SiMe3)=C(H)‐C6H5]2 ( 7 , Z,Z) and Ga[C(SiMe3)=C(H)‐C6H5]3 ( 8 ). Interestingly, compound 8 has two alkenyl groups with a Z configuration, while the third C=C double bond has the cis arrangement of Ga and H (E configuration). The reversibility of the cis/trans isomerisation of hydrogallation products was observed for the first time. tert‐Butyl‐phenylethyne gave the simple addition product, R2Ga(C6H5)=C(H)‐CMe3 ( 9 ), only with di(n‐propyl)gallium hydride.  相似文献   

16.
A derivative of poly(p‐phenylene ethynylene) was subjected to the palladium‐catalyzed three‐component coupling reactions with aryl halides and phenylboronic acid to obtain polymers having tetrasubstituted cis‐vinylene units. For example, 69% of the acetylene units in the prepolymer were converted to cis‐vinylene (i.e., tetrasubstituted cis‐vinylene) units using iodobenzene and phenylboronic acid (5 equiv each with respect to acetylene units). In the UV–vis absorption spectra of the resulting polymers, clear hypsochromic shifts of the absorption maxima were observed, while bathochromic shifts and suppression of the efficiency were observed in their photoluminescence spectra. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 787–791  相似文献   

17.
The reactions of enantiomerically pure (1R, 2S)‐(+)‐cis‐1‐aminoindan‐2‐ol, (1S, 2R)‐(‐)‐cis‐1‐aminoindan‐2‐ol, and racemic trans‐1‐aminoindan‐2‐ol with trimethylaluminum, ‐gallium, and ‐indium produce the intramolecularly stabilized, enantiomerically pure dimethylmetal‐1‐amino‐2‐indanolates (1R, 2S)‐(+)‐cis‐Me2AlO‐2‐C*HC7H6‐1‐C*HNH2 ( 1 ), (1S, 2R)‐(‐)‐cis‐Me2AlO‐2C*HC7H6‐1‐C*HNH2 ( 2 ), (1R, 2S)‐(+)‐cis‐Me2GaO‐2‐C*HC7H6‐1‐C*HNH2 ( 3 ), (1R, 2S)‐(+)‐cis‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 4 ), (1S, 2R)‐(‐)‐cis‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 5 ), and racemic (+/‐)‐trans‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 6 ). The compounds were characterized by 1H NMR, 13C NMR, 27Al NMR and mass spectra as well as 1 and 3 to 6 by determination of their crystal and molecular structures. The dynamic dissociation/association behavior of the coordinative metal‐nitrogen bond was studied by low temperature 1H NMR spectroscopy.  相似文献   

18.
19.
The first asymmetric total synthesis of kravanhin B has been accomplished with a linear reaction sequence of 13 steps starting from (R)‐(?)‐carvone. The synthesis features an intramolecular aldol cyclization to construct the desired cis‐fused decalin skeleton and an acid‐catalyzed dehydration and olefin isomerization to install the γ‐butenolide ring.  相似文献   

20.
(?)‐Hybridalactone ( 1 ) is a marine eicosanoid isolated from the red alga Laurencia hybrida. This natural product contains cyclopropane, cyclopentane, 13‐membered macrolactone and epoxide ring systems incorporating seven stereogenic centers. Moreover, this compound has an acid‐labile skipped Z,Z‐diene motif. In this paper, we report on the total synthesis of (?)‐hybridalactone ( 1 ). The unique eicosanoid (?)‐hybridalactone ( 1 ) was synthesized starting from optically active γ‐butyrolactone 2 in a linear sequence comprising 21 steps with an overall yield of 21.9 %. A key step in the synthesis of (?)‐hybridalactone ( 1 ) is the methyl phenylsulfonylacetate‐mediated one‐pot synthesis of the cis‐cyclopropane‐γ‐lactone derivative. This reaction provided an efficient and stereoselective access to cis‐cyclopropane‐γ‐lactone 12 . Further elaboration of the latter compounds through desulfonylation, epoxidation, oxidation, Wittig olefination and Shiina macrolactonization afforded (?)‐hybridalactone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号