首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

2.
A Pd‐catalyzed three‐component carbonylative‐annulation of 1‐hydroxy‐o‐carborane, internal alkyne and carbon monoxide has been achieved via direct and regioselective cage B?H activation. A class of C,B‐substituted carborano‐coumarin derivatives with potential applications in pharmaceuticals were facilely prepared in moderate to high yields with excellent chemoselectivity and regioselectivity. A plausible reaction mechanism including CO insertion, electrophilic B?H metalation, alkyne insertion and reductive elimination was proposed.  相似文献   

3.
The stereoselective synthesis of 1,2,3‐triazolooxazine and fused 1,2,3‐triazolo‐δ‐lactone by applying chemoenzymatic methods is described. trans‐2‐Azidocyclohexanol was successfully resolved by Novozyme 435 with an ee value of 99%. Installation of the alkyne moiety on the enantiomerically enriched azidoalcohol by O‐alkylation, followed by intramolecular azide? alkyne [3+2] cycloaddition resulted in the desired 1,2,3‐triazolooxazine derivative. Enantiomerically pure azidocyclohexanol was also subjected to the Huisgen 1,3‐dipolar cycloaddition reaction with dimethylacetylene dicarboxylate, followed by intramolecular cyclization of the corresponding cycloadduct, to furnish a fused 1,2,3‐triazolo‐δ‐lactone.  相似文献   

4.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

5.
The synthesis of multiarm star block (and mixed‐block) copolymers are efficiently prepared by using Cu(I) catalyzed azide‐alkyne click reaction and the arm‐first approach. α‐Silyl protected alkyne polystyrene (α‐silyl‐alkyne‐PS) was prepared by ATRP of styrene (St) and used as macroinitiator in a crosslinking reaction with divinyl benzene to successfully give multiarm star homopolymer with alkyne periphery. Linear azide end‐functionalized poly(ethylene glycol) (PEG‐N3) and poly (tert‐butyl acrylate) (PtBA‐N3) were simply clicked with the multiarm star polymer described earlier to form star block or mixed‐block copolymers in N,N‐dimethyl formamide at room temperature for 24 h. Obtained multiarm star block and mixed‐block copolymers were identified by using 1H NMR, GPC, triple detection‐GPC, atomic force microscopy, and dynamic light scattering measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 99–108, 2010  相似文献   

6.
The copper(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) was discovered in 2002, which has become the most remarkable example for “click chemistry” to date. In CuAAC reaction, 1‐copper(I) alkyne has been recognized to be a key intermediate. However, many contradictory experimental results for this intermediate were reported in literature. For example, only the in‐situ generated 1‐copper(I) alkyne was used, while the premade 1‐copper(I) alkyne proved to be inefficient under the standard conditions. The kinetic studies indicated that CuAAC reaction had a strict second‐order dependence on Cu(I) and the DFT studies demonstrated that 1‐copper(I) alkyne intermediate should be a dinuclear copper(I) complex. But these results were inconsistent with the structure of the premade 1‐copper(I) alkyne. Although hundreds of structurally different ligands were reported to significantly enhance the efficiency of CuAAC reaction, their functions were assigned to prevent the oxidation and the disproportionation of Cu(I) ion. Based on the investigation of the references and our works, we proposed that the in‐situ generated 1‐copper(I) alkyne in CuAAC reaction is not identical with the premade 1‐copper(I) alkyne. The ligands may play dual roles to activate the 1‐copper(I) alkyne by blocking the polymerization of the in‐situ formed 1‐copper(I) alkynes and dissociating the polymeric structures of the premade 1‐copper(I) alkynes. As a result, we first disclosed that carboxylic acids can function as such activators and a novel carboxylic acid‐catalyzed CuAAC strategy was developed, which has been proven to be the most convenient and highly efficient CuAAC method to date. Furthermore, highly efficient and regioselective methods for the syntheses of 1,4,5‐trisubstituted 1,2,3‐triazoles were developed by using the premade 1‐copper(I) alkynes as substrates, in which the novel function of the premade 1‐copper(I) alkynes as excellent dipolarophiles was first disclosed and applied. In this article, a series of works reported by our group for the in‐situ generated and the premade 1‐copper(I) alkynes in cycloadditions are reviewed.  相似文献   

7.
A one‐pot protocol for the diversity oriented synthesis of two N‐polyheterocycles indoloazepinobenzimidazole and benzimidazotriazolobenzodiazepine from a common N1‐alkyne‐1,2‐diamine building block is described. The approach involves sequential formation of benzimidazole through cyclocondensation and oxidation, which is followed by the formation of either an azepine ring (through alkyne activation and 6‐endo‐dig cyclization, 1,2‐migration with ring expansion, and re‐aromatization), or diazepine and triazole rings through 1,3‐dipolar cycloaddition.  相似文献   

8.
We report here a simple and universal synthetic pathway covering triple click reactions, Diels–Alder, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), and nitroxide radical coupling (NRC), to prepare well‐defined graft copolymers with V‐shaped side chains. The Diels–Alder click reaction between the furan protected‐maleimide‐terminated poly(ethylene glycol) (PEG) and a trifunctional core ( 1 ) carrying an anthracene, alkyne, and bromide was carried out to yield the corresponding α‐alkyne‐ and α‐bromide‐terminated PEG (PEG‐alkyne/Br) in toluene at 110 °C. Subsequently, the polystyrene or polyoxanorbornene with pendant azide functionality as a main backbone is reacted with the PEG‐alkyne/Br and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐terminated poly(ε‐caprolactone) using the CuAAC and NRC reactions in a one‐pot fashion in N,N′‐dimethylformamide at room temperature to result in the target V‐shaped graft copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4667–4674  相似文献   

9.
To better understand the range of cellular interactions of PtII‐based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize PtII compounds with alkyne or azide moieties for post‐treatment conjugation through the azide–alkyne cycloaddition (click) reaction. Herein, we report an alkyne‐appended cis‐diamine PtII compound, cis‐[Pt(2‐(5‐hexynyl)amido‐1,3‐propanediamine)Cl2] ( 1 ), the X‐ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(CC) interactions, Pt Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70‐fold fluorescence increase. This result demonstrates the potential for this new class of alkyne‐modified Pt compound for the comprehensive detection and isolation of Pt‐bound biomolecules.  相似文献   

10.
This article describes the reaction of amino resins with functional molecules using the azide/alkyne‐“click”‐reaction, opening a simple chemical modification of amino resins under aqueous conditions. Alkyne‐modified melamine‐formaldehyde resins are prepared via a direct cocondensation approach using propargylic alcohol (21.6–86.3 mmol) as additive. Subsequently, alkyne‐modified mono‐, bi‐, and trinuclear melamine‐species are identified via LC‐ESI‐TOF methods proving the covalent incorporation of alkyne‐moieties in amounts of up to 3.9 mol %. Subsequent modification of the alkyne‐modified resins was accomplished by reaction of functional azides (octyl azide (1), (azidomethyl)benzene (2), 1‐(6‐azidohexyl) thymine (3), and 4‐azido‐N‐(2,2,6,6‐tetramethylpiperidin‐4‐yl)benzamide (4)) with Cu(I)Br and DIPEA as a base. The formation of triazolyl‐modified MF‐resins was proven by LC‐ESI‐TOF methods, indicating the successful covalent modification of the amino resin with the azides 1 – 4 . © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
The reaction of benzynes with N‐heteroaromatics including quinolines, isoquinolines, and pyridines and various terminal alkynes or ketones with an α‐hydrogen in the presence of KF and 18‐crown‐6 in THF at room temperature for 8 h gave various N‐arylated 1,2‐dihydroheteroaromatics in good to moderate yields. Some of these product structures are found in various naturally occurring and biologically active heterocyclic compounds. The reaction involves an unusual multiple construction of new C? C, C? N, and C? H bonds and the cleavage of a C? H bond in one pot. It is likely that the three‐component coupling proceeds through the nucleophilic addition of quinoline to benzyne, which generates a zwitterionic species. The latter then attracts a proton from terminal alkyne (or ketone) to generate an N‐arylated quinolinium cation and an acetylide anion. Further reaction of these two ions provides the final substituted 1,2‐dihydroquinolines. In the reaction, the terminal alkyne acts first as a proton donor and then as a nucleophile. The application of a three‐component coupling reaction product, 1,2‐dihydro‐2‐pyridinyl alkyne in a stereospecific [4+2] Diels–Alder cycloaddition reaction with N‐phenyl maleimide to give an isoquinuclidine derivative, an important core present in various natural products, is demonstrated.  相似文献   

12.
To better understand the range of cellular interactions of PtII‐based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize PtII compounds with alkyne or azide moieties for post‐treatment conjugation through the azide–alkyne cycloaddition (click) reaction. Herein, we report an alkyne‐appended cis‐diamine PtII compound, cis‐[Pt(2‐(5‐hexynyl)amido‐1,3‐propanediamine)Cl2] ( 1 ), the X‐ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(C?C) interactions, Pt? Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt? alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70‐fold fluorescence increase. This result demonstrates the potential for this new class of alkyne‐modified Pt compound for the comprehensive detection and isolation of Pt‐bound biomolecules.  相似文献   

13.
The regioselective formation of (E)‐β‐vinylstannanes has been a long‐standing challenge in transition‐metal‐catalyzed alkyne hydrostannation. Herein, we report a well‐defined molybdenum‐based system featuring two encumbering m‐terphenyl isocyanides that reliably and efficiently delivers (E)‐β‐vinylstannanes from a range of terminal and internal alkynes with high regioselectivity. The system is particularly effective for aryl alkynes and can discriminate between alkyl chains of low steric hindrance in unsymmetrically substituted dialkyl alkynes. Catalytic hydrostannation with this system is also characterized by an electronic effect that leads to a decrease in regioselectivity when electron‐withdrawing groups are present on the alkyne substrate.  相似文献   

14.
We report that the 2‐phosphaethynolate anion (PCO?) reacts with propargylamines in the presence of a proton source to afford novel N‐derivatized phosphinecarboxamides bearing alkyne functionalities. Deprotonation of these species gives rise to novel five‐ and six‐membered anionic heterocycles resulting from intramolecular nucleophilic attack of the resulting phosphide at the alkyne functionality (via 5‐exo‐dig or 6‐endo‐dig cyclizations, respectively). The nature of the substituents on the phosphinecarboxamide can be used to influence the outcome of these reactions. This strategy represents a unique approach to phosphorus‐containing heterocylic systems that are closely related to known organic molecules with interesting bio‐active properties.  相似文献   

15.
The adenosine‐derived dimers 14a – d and 15b – d have been prepared by coupling the protected 8‐iodoadenosines 3 and 13 with the C(5′)‐ethynylated adenosine derivatives 5 , 6 , 11 , and 12 (Scheme 4). Similarly, the 5′‐epimeric dimer 16 was prepared by coupling 3 with the alkyne 8 (Scheme 5). The propargylic alcohol 4 was transformed into the N‐benzoylated alkyne 5 and into the amine 6 , while the epimeric alcohol 7 was converted to the epimeric amine 8 and the 5′‐deoxy analogues 11 and 12 (Scheme 3). Cross‐coupling of the iodoadenosine 13 with the alkyne 5 to 14a was optimised; it is influenced by the N‐benzoyl and the Et3SiO group of the alkyne, but hardly by the N‐benzoyl group of the 8‐iodoadenosine. The alkyne is most reactive when it is O‐silylated, but not N‐benzoylated. Cross‐coupling of the 5′‐deoxyalkynes proceeded more slowly. The dimers 14a – d , 15b – d , and 16 were obtained in good yields (Table 2). Deprotection of 14d and 16 led to 18 and 20 , respectively (Scheme 5). The diols 17 and 19 and the hexols 18 and 20 prefer the syn‐conformation in (D6)DMSO, completely for unit II and ≥80% for unit I; they exhibit partially persistent intramolecular O(5′)−H⋅⋅⋅N(3) H‐bonds. The persistence increases from 18% (unit I of 19 ), 32% (unit II of 17 and 19 ), 45% (unit I of 17 ), 52% (unit II of 18 and 20 ), and 55% (unit I of 20 ) to 82% (unit I of 18 ).  相似文献   

16.
A convergent coupling reaction is described that enables the stereoselective construction of angularly substituted trans‐fused decalins from acyclic precursors. The process builds on our alkoxide‐directed titanium‐mediated alkyne–alkyne coupling and employs a 1,7‐enyne coupling partner. Overall, the reaction is thought to proceed through initial formation of a tetrasusbstituted metallacyclopentadiene, stereoselective intramolecular [4+2] cycloaddition, elimination, isomerization, and regio‐ and stereoselective protonation. Distinct from our early studies directed at the synthesis of trans‐fused hydrindanes, the current annulative coupling reveals an important effect of TMSCl in controlling the final protonation—the event that establishes the stereochemistry of the ring fusion.  相似文献   

17.
Two cases of spontaneous evolution of monomers to linear polymers having novel cross‐laminated topology are reported. We synthesized two peptide monomers N3‐Gly‐Gly‐NH‐CH2‐CCH and N3‐Gly‐Gly‐Gly‐CH2‐CCH and solved their crystal structures by single‐crystal X‐ray diffraction. They adopt H‐bonded crisscrossed layered packing in their crystals such that: (a) the monomers are aligned head‐to‐tail in 1D‐chain‐like arrays and parallel arrangement of such arrays forms a layer; (b) the proximally placed azide and alkyne motifs are in an orientation apt for their regiospecific cycloaddition; (c) each monomer having x peptide bonds is H‐bonded with 2x monomers disposed in intersecting arrangement, which pre‐organize 1D‐chain‐like arrays in adjacent layers in perpendicular orientation. These crystals underwent spontaneous single‐crystal‐to‐single‐crystal (SCSC) polymerization via azide–alkyne cycloaddition reaction to form triazolyl‐polyglycines, at room temperature. The crisscrossed arrangement of monomers in adjacent layers ensured the formation of cross‐laminated polymers.  相似文献   

18.
1‐Thiacyclooct‐4‐yne (=5,6‐didehydro‐3,4,7,8‐tetrahydro‐2H‐thiocin; 9 ) can be prepared from thiocan‐5‐one ( 6 ) in three steps by applying the so‐called selenadiazole method. The heterocyclic alkyne can be oxidized to the corresponding sulfoxide 16 and sulfone 17 . Due to their geometrical strain, all three cyclic alkynes show high reactivities in Diels? Alder and 1,3‐dipolar cycloadditions. Moreover, tetrathiafulvalenes can be prepared from 9 and 16 by the reaction with CS2.  相似文献   

19.
An alkyne‐containing multiple aromatic ether‐linked phthalonitrile has been synthesized and characterized. The oligomeric phthalonitrile monomer was prepared from the reaction of an excess amount of bisphenol A with 4,4′‐dibromotolane in the presence of K2CO3 in a N,N‐dimethylformamide/toluene solvent mixture, followed by end‐capping with 4‐nitrophthalonitrile in a two‐step, one‐pot reaction. After being cured in the presence of bis(4‐[4‐aminophenoxy]phenyl)sulfone, the polymeric properties of the alkyne‐ and non‐alkyne‐containing oligomeric phthalonitrile resins were compared. Rheometric measurements and thermogravimetric analysis showed that the alkyne‐containing oligomeric phthalonitrile resin had better mechanical properties than an analogous non‐alkyne‐containing resin cured under identical conditions and exhibited excellent thermal and oxidative properties. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4774–4778  相似文献   

20.
Alkyne metathesis is increasingly explored as a reliable method to close macrocyclic rings, but there are no prior examples of an alkyne‐metathesis‐based homodimerization approach to natural products. In this approach to the cytotoxic C2‐symmetric marine‐derived bis(lactone) disorazole C1, a highly convergent, modular strategy is employed featuring cyclization through an ambitious one‐pot alkyne cross‐metathesis/ring‐closing metathesis self‐assembly process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号