首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
微孔配位聚合物作为新型储氢材料的研究   总被引:6,自引:0,他引:6  
杨勇  沈泓滢  邢航  潘毅  白俊峰 《化学进展》2006,18(5):648-656
微孔配位聚合物性质独特、结构多样,具有广泛的应用前景,它已成为近几年来一个热门的研究领域。本文简要介绍该类化合物作为一种新型的储氢材料,在合成、结构和储氢性能方面的研究进展。  相似文献   

2.
3.
Microporous organic polymers offer the possibility of storing hydrogen safely at low temperatures and moderate pressures via physisorption. A range of polymers of intrinsic microporosity (PIMs) have been studied. The best PIM to date is based on a triptycene monomer and takes up 2.7% H2 by mass at 10 bar/77 K. Hypercrosslinked polymers (HCPs) also show promising performance, particularly at pressures >10 bar. The form of the H2 isotherm is influenced by the micropore distribution, a higher concentration of ultramicropores (pore size <0.7 nm), as found in PIMs, being associated with enhanced low pressure adsorption. The performance of polymers relative to other microporous materials (carbons and metal‐organic frameworks) is compared and promising methods to enhance the hydrogen uptake of microporous polymers are suggested.

  相似文献   


4.
Two kinds of novel organic microporous polymers TCP s ( TCP‐A and TCP‐B ) were prepared by two cost‐effective synthetic strategies from the monomer of tricarbazolyltriptycene ( TCT ). Their structure and properties were characterized by FT‐IR, solid 13C NMR, powder XRD, SEM, TEM, and gas absorption measurements. TCP‐B displayed a high surface area (1469 m2 g?1) and excellent H2 storage (1.70 wt % at 1 bar/77 K) and CO2 uptake abilities (16.1 wt % at 1 bar/273 K), which makes it a promising material for potential application in gas storage.  相似文献   

5.
Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium‐doped naphthyl‐containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol?1 and the methyllithium‐doped naphthyl‐containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl‐containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target.  相似文献   

6.
赵洋  王笑颜  张崇  蒋加兴 《化学学报》2015,73(6):634-640
共轭微孔聚合物由于其在气体吸附与分离、非均相催化和光电子等领域的巨大应用前景而广受关注. 本文以四苯基乙烯为基本构筑单元, 通过Sonogashira-Hagihara偶联反应制备了3种共轭微孔聚合物新材料, 研究了结构组成和构建模块对制备聚合物孔性能和气体吸附性能的影响. 氮气吸附测试结果表明, 由1,1,2,2-四炔四苯基乙烯自聚合制备的TPE-CMP1具有较大的比表面积, 为1096 m2·g-1. 在1.13 bar/273 K条件下, TPE-CMP1的CO2吸附能力为2.36 mmol·g-1; 在1.13 bar/77.3 K条件下, TPE-CMP1对H2的吸附能力为1.35 wt%. 另外, 制备的共轭微孔聚合物展示出较高的CO2/N2选择性吸附值. 由于这类多孔聚合物材料具有合成方法简单、优良的物理化学及热稳定性、高的比表面积和CO2吸附性能, 因此将在气体吸附与分离方面具有潜在的应用前景.  相似文献   

7.
王玉冰  陈杰  延卫  崔建文 《化学进展》2021,33(5):838-854
共轭微孔聚合物(CMPs)是一类有机多孔聚合物,与常规共轭聚合物或多孔材料相比,其最大的特点是既有π共轭骨架又具有大量微孔.这类材料在解决能源和环境问题方面显示出巨大的潜力,已在气体吸附、非均相催化、发光材料、化学传感器、电能存储和生物杂化物等领域显示出巨大的应用前景.目前已开发出多种用于CMPs结构单元设计与合成的新...  相似文献   

8.
有机微孔聚合物研究进展   总被引:3,自引:0,他引:3  
有机微孔聚合物(MOPs)是一类新型的多孔材料,具有合成方法多样、化学和物理性质稳定、孔尺寸可调控、表面可修饰等优点。近年来,MOPs在物理吸附储存气体方面表现出巨大潜力,从而在储氢和温室气体封存方面成为研究的热点之一。本文首先介绍了MOPs的结构类型及特点,分别介绍了自具微孔聚合物、超交联聚合物、共价有机网络以及共轭微孔聚合物的最新进展,分析结构与性能间的关系,并对其在催化、分离和气体储存方面的应用做了简单总结。最后对MOPs未来的研究进行了展望。  相似文献   

9.
微孔镧系配位聚合物   总被引:1,自引:0,他引:1  
微孔配位聚合物与通常的微孔无机材料相比, 具有非常明显的优势. 而镧系离子特殊的光学和磁学性质, 更使得微孔镧系配位聚合物的研究成为热点. 本文简要地报道了微孔镧系配位聚合物的研究现状, 对一些微孔镧系配位聚合物的结构特点进行了描述, 讨论了影响微孔配位聚合物形成的主要因素. 一般来说, 线型配体往往能很好地将金属离子连接起来, 得到理想的微孔镧系配位聚合物; 选择合适的第二配体, 有利于构筑结构新颖的微孔镧系配位聚合物; 镧系收缩对能否形成微孔配位聚合物的影响并不明显, 只是轻稀土离子往往倾向于多结合一些小分子配体来满足更高的配位数.  相似文献   

10.
共轭微孔聚合物由于其高的比表面积、优良的物理化学稳定性、多样的合成方法以及沿分子骨架延伸的共轭结构等特点,近几年得到广泛关注和快速发展.本工作以1,3,5-三氟-2,4,6-三碘苯作为含氟单体与1,3,5-三乙炔基苯通过Sonogashira偶联反应聚合得到含氟共轭微孔聚合物F-CMP.通过把氟原子引入到共轭微孔聚合物骨架中,F-CMP显示出良好的疏水性能,与水的接触角达到145°.得益于良好的疏水性能和适宜的孔隙结构,相比于骨架结构相似的不含氟共轭微孔聚合物(H-CMP),F-CMP对油和有机溶剂的吸附量得到大幅提高,且显示出高的吸附速率和良好的吸附循环性.  相似文献   

11.
12.
Acetylene sorption of microporous metal formates M(HCOO)2 (M=Mg and Mn) was investigated. Measurements of acetylene sorption at 196, 275, and 298 K showed a Type I isotherm with quick saturation at low pressures, and 50–75 cm3 g?1 uptake at 1.0 atm. The single‐crystal X‐ray structure analysis of the acetylene‐adsorbed metal formates revealed that acetylene molecules occupy two independent positions in the zigzag channels of the frameworks with a stoichiometry of M(HCOO)2?1/3C2H2, which is consistent with the gas sorption experiments. No specific interaction except van der Waals interactions between the adsorbed acetylene molecules and the walls of the frameworks was found. Sorption properties of other gases, including CO2, CH4, N2, O2, and H2, were also investigated. When the temperature was increased to 298 K, the amount of adsorbed acetylene was still above 60 cm3 g?1 for Mg(HCOO)2 and 50 cm3 g?1 for Mn(HCOO)2, whereas the uptake of other gases decreased substantially. The microporous metal formates may thus be useful not only for the storage of acetylene but also its separation from other gases at room or slightly higher temperatures.  相似文献   

13.
Hypercrosslinked polymers (HCPs) are currently receiving great interest due to their easy preparation, high chemical and thermal stability, and low cost. Combined with the lightweight properties and high surface areas HCPs can be considered as promising materials for gas storage and separation, catalysis, and heavy metal ions removal in wastewater treatment. This Feature Article summarizes strategies for the preparation of HCPs, comprising the post‐crosslinking of “Davankov‐type” resins, direct polycondensation of aromatic chloromethyl (or hydroxymethyl) monomers, and knitting aromatic compound polymers (KAPs). The HCPs applications, such as H2 storage, CO2 capture, and heterogeneous catalysis, are also discussed throughout in the article. Finally, the outlook of this research area is given.  相似文献   

14.
《化学:亚洲杂志》2017,12(17):2291-2298
CO2 capture is very important to reduce the CO2 concentration in atmosphere. Herein, we report the preparation of microporous polymers with tunable surface polarity for CO2 capture. Porous polymers functionalized with ‐NH2, ‐SO3H, and ‐SO3Li have been successfully prepared by using a post‐synthesis modification of microporous polymers (P‐PhPh3 prepared with 1,3,5‐triphenylbenzene as the monomer and AlCl3 as the catalyst) by chemical transformations, such as nitration–reduction, sulfonation, and cationic exchange. The CO2 adsorption selectivity (CO2/N2 and CO2/H2) and isosteric heats of the microporous polymers increase markedly after modification, P‐PhPh3‐NH2 and P‐PhPh3‐SO3Li afford higher CO2 uptake capacity than P‐PhPh3 at pressures of less than 0.15 bar due to the enhanced interaction between CO2 and the ‐NH2 and ‐SO3Li functional groups. Moreover, functionalized porous polymers could be stably used for CO2 capture. Surface modification is an efficient approach to tune the CO2 capture properties of porous polymers.  相似文献   

15.
A family of azo‐bridged covalent organic polymers (azo‐COPs) was synthesized through a catalyst‐free direct coupling of aromatic nitro and amine compounds under basic conditions. The azo‐COPs formed 3D nanoporous networks and exhibited surface areas up to 729.6 m2 g?1, with a CO2‐uptake capacity as high as 2.55 mmol g?1 at 273 K and 1 bar. Azo‐COPs showed remarkable CO2/N2 selectivities (95.6–165.2) at 298 K and 1 bar. Unlike any other porous material, CO2/N2 selectivities of azo‐COPs increase with rising temperature. It was found that azo‐COPs show less than expected affinity towards N2 gas, thus making the framework “N2‐phobic”, in relative terms. Our theoretical simulations indicate that the origin of this unusual behavior is associated with the larger entropic loss of N2 gas molecules upon their interaction with azo‐groups. The effect of fused aromatic rings on the CO2/N2 selectivity in azo‐COPs is also demonstrated. Increasing the π‐surface area resulted in an increase in the CO2‐philic nature of the framework, thus allowing us to reach a CO2/N2 selectivity value of 307.7 at 323 K and 1 bar, which is the highest value reported to date. Hence, it is possible to combine the concepts of “CO2‐philicity” and “N2‐phobicity” for efficient CO2 capture and separation. Isosteric heats of CO2 adsorption for azo‐COPs range from 24.8–32.1 kJ mol?1 at ambient pressure. Azo‐COPs are stable up to 350 °C in air and boiling water for a week. A promising cis/trans isomerization of azo‐COPs for switchable porosity is also demonstrated, making way for a gated CO2 uptake.  相似文献   

16.
In recent years, conjugated microporous polymers (CMPs) have become important precursors for environmental and energy applications, compared with inorganic electrode materials, due to their ease of preparation, facile charge storage process, π-conjugated structures, relatively high thermal and chemical stability, abundance in nature, and high surface areas. Therefore, in this study, we designed and prepared new benzobisthiadiazole (BBT)-linked CMPs (BBT–CMPs) using a simple Sonogashira couplings reaction by reaction of 4,8-dibromobenzo(1,2-c;4,5-c′)bis(1,2,5)thiadiazole (BBT–Br2) with ethynyl derivatives of triphenylamine (TPA-T), pyrene (Py-T), and tetraphenylethene (TPE-T), respectively, to afford TPA–BBT–CMP, Py–BBT–CMP, and TPE–BBT–CMP. The chemical structure and properties of BBT–CMPs such as surface areas, pore size, surface morphologies, and thermal stability using different measurements were discussed in detail. Among the studied BBT–CMPs, we revealed that TPE–BBT–CMP displayed high degradation temperature, up to 340 °C, with high char yield and regular, aggregated sphere based on thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Furthermore, the Py–BBT–CMP as organic electrode showed an outstanding specific capacitance of 228 F g−1 and superior capacitance stability of 93.2% (over 2000 cycles). Based on theoretical results, an important role of BBT–CMPs, due to their electronic structure, was revealed to be enhancing the charge storage. Furthermore, all three CMP polymers featured a high conjugation system, leading to improved electron conduction and small bandgaps.  相似文献   

17.
采用有机单体侧链嫁接2,2,6,6-四甲基哌啶氧自由基(2,2,6,6-tetramethylpiperidineoxyl,TEMPO)的策略将TEMPO嫁接到2,5-二溴苯甲酸侧链,并与四(4-乙炔基苯)甲烷通过Sonogashira偶联反应,构筑TEMPO自由基功能化共轭微孔聚合物CMP-4-TEMPO.利用核磁共振谱(NMR)、扫描电子显微镜(SEM)、粉末X-射线衍射(XRD)红外吸收光谱(FT-IR)和电子顺磁共振谱(EPR)等技术研究了所合成单体及CMP形貌和结构.催化性能测试结果表明CMP-4-TEMPO可将5-羟甲基糠醛(5-HMF)高效、高选择性氧化成高附加值2,5-二甲酰基呋喃(2,5-DFF).CMP-4-TEMPO催化剂循环利用10次仍保持较高的转化率.提出了CMP-4-TEMPO中形成TEMPO氧正离子是实现5-HMF转化为2,5-DEF的催化氧化机理.CMP-4-TEMPO有望成为各种醇高效、高选择性氧化以及可循环利用的异相催化剂.  相似文献   

18.
Salen-porphyrin-based conjugated microporous polymers(CMPs) have been demonstrated to be an attractive material platform for predesigned structures and promising applications. Herein, a new salen-porphyrin-based conjugated microporous polymer(SP-CMP-L) was solvothermally prepared by porphyrin-forming condensation reaction of pyrrole and salen-dialdehyde derivative. The SP-CMP-L was characterized by spectroscopy technologies, and also exhibited excellent thermal and chemical stability. The porosity of SP-CMP-L was examined by N2 adsorption/desorption isotherms. The BET specific surface area of the CMP material was calculated to be 290.4 m2/g with the pore volume of 0.19 cm3/g. The microstructure property of the resulting material was further evaculated by scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The SP-CMP-L with salen and porphyrin multidentate coordination sites was proposed to serve as an initiator to promote the cross-coupling between aryl halides with unactivated arenes under base-mediated conditions. The transition-metal-free catalytic protocol provided high catalytic activity for direct C-H arylation reaction of unactivated arenes, and thus offered a convenient and efficient alternative for the construction biaryl scaffolds. In addition, the salen-porphyrin-based CMP material possessed remarkable adsorption capability for the removal of organic amines from water.  相似文献   

19.
Sort the bigs from the smalls : Reverse‐selective membranes, through which bigger molecules selectively permeate, are attractive for developing chemical processes. A new adsorption‐based reverse‐selective membrane that utilizes a Na cation occluded in a zeolitic framework is presented. The membrane developed enables the selective permeation and separation of bigger polar molecules, such as methanol and water, from hydrogen above 473 K.

  相似文献   


20.
Microporous organic polymers (MOP) of a new type have been synthesised in high yields by a simple coordination polymerization of 1,3‐diethynylbenzene, 1,4‐diethynylbenzene and 4,4′‐diethynylbiphenyl catalysed by [Rh(cod)acac] and [Rh(nbd)acac] complexes. The new MOPs are non‐swellable polyacetylene‐type conjugated networks consisting of ethynylaryl‐substituted polyene main chains that are crosslinked by arylene linkers. Prepared MOP samples have a mole fraction of branching units (by 13C CP/MAS NMR) from 0.30 to 0.47 and exhibit the BET (Brunaer‐Emmett‐Teller) surface up to 809 m2 g−1 and hydrogen uptake up to 0.69 wt% (77 K, H2 pressure 750 torr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号