共查询到20条相似文献,搜索用时 0 毫秒
1.
Prof. Jesper Bendix Dr. Kensha Marie Clark 《Angewandte Chemie (International ed. in English)》2016,55(8):2748-2752
To survey the noninnocence of bis(arylimino) acenaphthene (BIAN) ligands (L) in complexes with early metals, the homoleptic vanadium complex, [V(L)3] ( 1 ), and its monocation, [V(L)3]PF6 ( 2 ), were synthesized. These complexes were found to have a very rich electronic behavior, whereby 1 displays strong electronic delocalization and 2 can be observed in unprecedented valence tautomeric forms. The oxidation states of the metal and ligand components in these complexes were assigned by using spectroscopic, crystallographic, and magnetic analyses. Complex 1 was identified as [VIV(Lred)(L.)2] (Lred=N,N′‐bis(3,5‐dimethylphenylamido)acenaphthylene; L.=N,N′‐bis(3,5‐dimethylphenylimino)acenaphthenesemiquinonate). Complex 2 was determined to be [VV(Lred)(L.)2]+ at T<150 K and [VIV(L.)3]+ at T>150 K. Cyclic voltammetry experiments reveal six quasi‐reversible processes, thus indicating the potential of this metal–ligand combination in catalysis or materials applications. 相似文献
2.
Galina S. Matouzenko Dr. Serguei A. Borshch Dr. Erwann Jeanneau Dr. Mark B. Bushuev Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(5):1252-1260
This paper reports the synthesis of a family of mononuclear complexes [Fe(L)]X2 (X=BF4, PF6, ClO4) with hexadentate ligands L=Hpy-DAPP ({bis[N-(2-pyridylmethyl)-3-aminopropyl](2-pyridylmethyl)amine}), Hpy-EPPA ({[N-(2-pyridylmethyl)-3-aminopropyl][N-(2-pyridylmethyl)-2-aminoethyl](2-pyridylmethyl)amine}) and Hpy-DEPA ({bis[N-(2-pyridylmethyl)-2-aminoethyl](2-pyridylmethyl)amine}). The systematic change of the length of amino-aliphatic chains in these ligands results in chelate rings of different size: two six-membered rings for Hpy-DAPP, one five- and one six-membered rings for Hpy-EPPA, and two five-membered rings for Hpy-DEPA. The X-ray analysis of three low-spin complexes [Fe(L)](BF4)2 revealed similarities in their molecular and crystal structures. The magnetic measurements have shown that all synthesized complexes display spin-crossover behavior. The spin-transition temperature increases upon the change from six-membered to five-membered chelate rings, clearly demonstrating the role of the ligand strain. This effect does not depend on the nature of the counter ion. We discuss the structural features accountable for the strain effect on the spin-transition temperature. 相似文献
3.
Dr. Laurence J. Kershaw Cook Dr. Helena J. Shepherd Dr. Tim P. Comyn Dr. Chérif Baldé Dr. Oscar Cespedes Dr. Guillaume Chastanet Prof. Malcolm A. Halcrow 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(12):4805-4816
Crystalline [Fe(bppSMe)2][BF4]2 ( 1 ; bppSMe=4‐(methylsulfanyl)‐2,6‐di(pyrazol‐1‐yl)pyridine) undergoes an abrupt spin‐crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit‐cell a axis to one‐third of its original value (high‐temperature phase 1; Pbcn, Z=12; low‐temperature phase 2; Pbcn, Z=4). The SCO‐active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140–300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 ( 2 ; bppBr=4‐bromo‐2,6‐di(pyrazol‐1‐yl)pyridine) and [Fe(bppI)2][BF4]2 ( 3 ; bppI=4‐iodo‐2,6‐di(pyrazol‐1‐yl)‐pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1 – 3 reveals that the more cooperative spin transition in 1 , and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light‐induced excited‐spin‐state trapping (LIESST) effect with T(LIESST=70–80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components. 相似文献
4.
Dr. Wasinee Phonsri Casey G. Davies Dr. Guy N. L. Jameson Dr. Boujemaa Moubaraki Prof. Keith S. Murray 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(4):1322-1333
Heteroleptic iron(III) complexes of formula [Fe(qsal)(thsa)]?solvent have been synthesized: [Fe(qsal)(thsa)]?0.4 BuOH ( 1 ), [Fe(qsal)(thsa)]?0.5 MeCN ( 2 ) and [Fe(qsal)(thsa)]?0.5 THF, ( 3 ). The latter two show partial solvent loss at room temperature to yield [Fe(qsal)(thsa)]?0.1 MeCN ( 2′ ) and [Fe(qsal)(thsa)]?0.1 THF ( 3′ ), respectively. This family maintains a structural integrity which is analogous over different degrees of solvation, a rare occurrence in discrete molecular species. Uniquely, removal of MeCN from compound 2 leads to retention of crystallinity yielding the isostructural, fully desolvated compound [Fe(qsal)(thsa)] ( 2′′ ) and a new high spin polymorph, 4 . To the best of our knowledge, this is the first compound that forms polymorphs through a desolvation process. The desolvated mixture, 2′′ and 4 , is porous and can reabsorb MeCN and give rise to 2′ again. This illustrates the reversible single‐crystal‐to‐single‐crystal transformation of two polymorphs back to a purely original phase, 2′′ + 4 ? 2′ . The structural, magnetic and M?ssbauer features of the various samples are described in terms of spin crossover. 相似文献
5.
手性二噁唑啉吡啶铁和镍配合物的制备与表征 总被引:1,自引:0,他引:1
Tridentate bis(oxazolinylpyridine)(1) reacted with nickel chloride or ferrous chloride in anhydrous ethanol to form bis(oxazolinylpyridine) Nickel(Ⅱ) and Iron(Ⅱ) complexes. The stable solid complexes were characterized with IR, UV, MS, XPS and elemental analysis. No stable complexes were formed with bidentate bis(oxazoline)(2) ins- tead of bis(oxazolinylpyridine). 相似文献
6.
Iron 10‐Thiacorroles: Bioinspired Iron(III) Complexes with an Intermediate Spin (S=3/2) Ground State 下载免费PDF全文
Dimitri Sakow Dr. Dirk Baabe Birte Böker Dr. Olaf Burghaus Dr. Markus Funk Dr. Christian Kleeberg Dr. Dirk Menzel Clemens Pietzonka Prof. Dr. Martin Bröring 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(10):2913-2924
A first systematic study upon the preparation and exploration of a series of iron 10‐thiacorroles with simple halogenido (F, Cl, Br, I), pseudo‐halogenido (N3, I3) and solvent‐derived axial ligands (DMSO, pyridine) is reported. The compounds were prepared from the free‐base octaethyl‐10‐thiacorrole by iron insertion and subsequent ligand‐exchange reactions. The small N4 cavity of the ring‐contracted porphyrinoid results in an intermediate spin (i.s., S=3/2) state as the ground state for the iron(III) ion. In most of the investigated cases, the i.s. state is found unperturbed and independent of temperature, as determined by a combination of X‐ray crystallography and magnetometry with 1H NMR‐, EPR‐, and Mössbauer spectroscopy. Two exceptions were found. The fluorido iron(III) complex is inhomogenous in the solid and contains a thermal i.s. (S=3/2)→high spin (h.s., S=5/2) crossover fraction. On the other side, the cationic bis(pyridine) complex resides in the expected low spin (l.s., S=1/2) state. Chemically, the iron 10‐thiacorroles differ from the iron porphyrins mainly by weaker axial ligand binding and by a cathodic shift of the redox potentials. These features make the 10‐thiacorroles interesting ligands for future research on biomimetic catalysts and model systems for unusual heme protein active sites. 相似文献
7.
Chun‐Feng Wang Dr. Ren‐Fu Li Prof. Dr. Xue‐Yuan Chen Dr. Rong‐Jia Wei Prof. Dr. Lan‐Sun Zheng Prof. Dr. Jun Tao 《Angewandte Chemie (International ed. in English)》2015,54(5):1574-1577
Hybrid materials integrated with a variety of physical properties, such as spin crossover (SCO) and fluorescence, may show synergetic effects that find applications in many fields. Herein we demonstrate a promising post‐synthetic approach to achieve such materials by grafting fluorophores (1‐pyrenecarboxaldehyde and Rhodamine B) on one‐dimensional SCO FeII structures. The resulting hybrid materials display expected one‐step SCO behavior and fluorescent properties, in particular showing a coupling between the transition temperature of SCO and the temperature where the fluorescent intensity reverses. Consequently, synergetic effect between SCO and fluorescence is incorporated into materials despite different fluorophores. This study provides an effective strategy for the design and development of novel magnetic and optical materials. 相似文献
8.
9.
Non-innocent ligands (NILs) like bis(pyridylimino)isoindolide (BPI) play crucial roles in coordination chemistry, biosciences, catalysis and material sciences. Investigating the isolated redox states of NILs is inevitable for understanding their redox-activity and fine-tuning the properties of corresponding metal complexes. The limited number of fundamental studies on the coordination behavior and redox chemistry of reduced BPI species is suggested to hamper further applications of the title compounds. This work describes for the first time the isolation of alkali metal complexes of BPI and Me2BPI in three different oxidation states and their characterization by means of NMR or EPR spectroscopy, DFT calculations, and SC-XRD studies. The latter revealed the connection between bond orders in the ligand scaffold and its oxidation state. The paramagnetic compound Me2BPI-K2 was isolated as a coordination copolymer with 18-crown-6, which enabled the characterization of the dianionic BPI radical. Furthermore, the so-far unknown trianionic state of BPI was reported by the isolation of BPI-K3. This divulges an unprecedented bis(amidinato)isoindolide coordination mode. 相似文献
10.
11.
Photomagnetic Response in Highly Conductive Iron(II) Spin‐Crossover Complexes with TCNQ Radicals 下载免费PDF全文
Hoa Phan Shermane M. Benjamin Eden Steven Prof. Michael Shatruk 《Angewandte Chemie (International ed. in English)》2015,54(3):823-827
Co‐crystallization of a cationic FeII complex with a partially charged TCNQ.δ? (7,7′,8,8′‐tetracyanoquinodimethane) radical anion has afforded molecular materials that behave as narrow band‐gap semiconductors, [Fe(tpma)(xbim)](X)(TCNQ)1.5?DMF (X=ClO4? or BF4?; tpma=tris(2‐pyridylmethyl)amine, xbim=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bisimidazole). Remarkably, these complexes also exhibit temperature‐and light‐driven spin crossover at the FeII center, and are thus the first structurally defined magnetically bistable semiconductors assembled with the TCNQ.δ? radical anion. Transport measurements reveal the conductivity of 0.2 S cm?1 at 300 K, with the low activation energy of 0.11 eV. 相似文献
12.
Dr. Katell Sénéchal-David Dr. Charlotte Buron Dr. Nathalie Ségaud Dr. Jean-Noël Rebilly Amandine Dos Santos Dr. Jonathan Farjon Dr. Régis Guillot Dr. Christian Herrero Tanya Inceoglu Prof. Frédéric Banse 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(53):12405-12411
The reactivity and selectivity of non-heme FeII complexes as oxidation catalysts can be substantially modified by alteration of the ligand backbone or introduction of various substituents. In comparison with the hexadentate ligand N,N,N′,N′-tetrakis(pyridin-2-ylmethyl)ethane-1,2-diamine (TPEN), N,N′-bis[1-(pyridin-2-yl)ethyl]-N,N′-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (2MeL62) has a methyl group on two of the four picolyl positions. FeII complexation by 2MeL62 yields two diastereomeric complexes with very similar structures, which only differ in the axial/equatorial positions occupied by the methylated pyridyl groups. In solution, these two isomers exhibit different magnetic behaviors. Whereas one isomer exhibits temperature-dependent spin-state conversion between the S=0 and S=2 states, the other is more reluctant towards this spin-state equilibrium and is essentially diamagnetic at room temperature. Their catalytic properties for the oxidation of anisole by H2O2 are very different and correlate with their magnetic properties, which reflect their lability/inertness. These different properties most likely depend on the different steric constraints of the methylated pyridyl groups in the two complexes. 相似文献
13.
14.
A Unified Treatment of the Relationship Between Ligand Substituents and Spin State in a Family of Iron(II) Complexes 下载免费PDF全文
Dr. Laurence J. Kershaw Cook Dr. Rafal Kulmaczewski Dr. Rufeida Mohammed Stephen Dudley Simon A. Barrett Dr. Marc A. Little Prof. Robert J. Deeth Prof. Malcolm A. Halcrow 《Angewandte Chemie (International ed. in English)》2016,55(13):4327-4331
The influence of ligands on the spin state of a metal ion is of central importance for bioinorganic chemistry, and the production of base‐metal catalysts for synthesis applications. Complexes derived from [Fe(bpp)2]2+ (bpp=2,6‐di{pyrazol‐1‐yl}pyridine) can be high‐spin, low‐spin, or spin‐crossover (SCO) active depending on the ligand substituents. Plots of the SCO midpoint temperature (T ) in solution vs. the relevant Hammett parameter show that the low‐spin state of the complex is stabilized by electron‐withdrawing pyridyl (“X”) substituents, but also by electron‐donating pyrazolyl (“Y”) substituents. Moreover, when a subset of complexes with halogeno X or Y substituents is considered, the two sets of compounds instead show identical trends of a small reduction in T for increasing substituent electronegativity. DFT calculations reproduce these disparate trends, which arise from competing influences of pyridyl and pyrazolyl ligand substituents on Fe‐L σ and π bonding. 相似文献
15.
Da‐Yu Wu Dr. Osamu Sato Prof. Yasuaki Einaga Prof. Chun‐Ying Duan Dr. 《Angewandte Chemie (International ed. in English)》2009,48(8):1475-1478
How low can you go? An FeII4 square was prepared by self‐assembly and exhibits both thermally induced and photoinduced spin crossover from a system with four high‐spin (HS) centers to one with two high‐spin and two low‐spin (LS) centers. The spin‐crossover sites are located on the same side of the square, and the spin transition and magnetic interactions (see picture) are synergistically coupled.
16.
17.
Hoa V. Phan Pradip Chakraborty Meimei Chen Yitzi M. Calm Dr. Kirill Kovnir Lawrence K. Keniley Jr. Jordan M. Hoyt Elisabeth S. Knowles Dr. Céline Besnard Prof. Mark W. Meisel Prof. Andreas Hauser Prof. Catalina Achim Prof. Michael Shatruk 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(49):15805-15815
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes. 相似文献
18.
Several novel substituted bis(2‐pyridylimino)isoindolato (BPI) cobalt(II) and iron(II) complexes [M(BPI)(OAc)(H2O)] (M = Co: 1 ‐ 6, Fe: 7) have been synthesized by reaction of bis(2‐pyridylimino)isoindole derivatives with the corresponding metal(II) acetates. Reaction of 1‐6 with 1.5 ‐ 2 molar equivalents of t‐BuOOH gave the corresponding alkylperoxocobalt(III) complexes [Co(BPI)(OAc)(OOtBu)] (10 ‐ 15). Using an aqueous solution of t‐BuOOH (70 %), cyclohexene was selectively catalytically oxidized to the dialkylperoxide cyclohex‐2‐ene‐1‐t‐butylperoxide. 相似文献
19.
Dr. Szymon Chorazy Tomasz Charytanowicz Dr. Dawid Pinkowicz Junhao Wang Dr. Koji Nakabayashi Stephen Klimke Prof. Dr. Franz Renz Prof. Dr. Shin-ichi Ohkoshi Prof. Dr. Barbara Sieklucka 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(36):15871-15879
A two-step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3-CNpy)2][Re(CN)8]}⋅H2O ( 1 ) (3-CNpy=3-cyanopyridine) assembly consisting of cyanido-bridged FeII-ReV square grid sheets bonded by Cs+ ions. The presence of two non-equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non-covalent interlayer interactions involving Cs+, [ReV(CN)8]3− ions, and 3-CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin-transition phenomenon could be tuned by an external pressure giving the room-temperature range of SCO, as well as by visible-light irradiation, inducing an efficient recovery of the high-spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect. 相似文献
20.
自旋交叉配合物在温度、压力、光照和磁场等刺激下可以发生高低自旋态之间的可逆转变,通常还伴随着颜色、体积和电导率变化以及热滞等效应,因此这类材料在光热开关、传感器、显示和存储等领域具有潜在的应用.由于可以获得高质量的超洁净薄膜,高真空蒸镀工艺常用于分子电子学与分子磁学等的器件制备,目前报道的可蒸镀自旋交叉配合物种类较少,大大限制了自旋交叉配合物的器件应用.针对可蒸镀自旋交叉配合物的薄膜与器件进行了系统的综述,介绍了几种主要的适于高真空蒸镀的自旋交叉配合物,结合不同的表征手段分析了衬底对分子薄膜自旋转变特性的影响,并针对相关的概念性器件进行了讨论,最后对自旋交叉配合物在器件应用中存在的难点和未来的发展趋势进行了展望和评述,希望能够为自旋交叉领域的器件应用提供一些借鉴. 相似文献