首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A naphthofluorescein-based fluorescent probe with two independent reaction sites (nitro-2,1,3-benzoxadiazole and acrylate moiety) was developed. Integrating these two reaction sites into a single molecule not only can guarantee the selective detection of Cys/Hcy in an elegant fashion, but also can enable Cys/Hcy detection in a multiple-channel responsive manner.  相似文献   

2.
We introduce a new rhodamine-based fluorescent chemosensor, FD8 which exhibits a distinct two-photon excited fluorescence (TPEF) on/off characteristic upon binding Cr3+ ions. By coordination with metal cation, conformation of FD8 changes from spirocyclic to open-ring, resulting in remarkable enhancement of absorption and fluorescence both in one- and two-photon excitations. As a result, a 29-fold enhancement of two-photon excited fluorescent intensity was observed when 10 eq. Cr3+ was added to the FD8 solution. The detection limit of Cr3+ cation concentration down to 1 μM (0.01 eq. of FD8) was achieved under our experimental condition. Besides the excitation within ultraviolet regime by fluorescence resonance energy transfer (FRET) mechanism, the TPEF on/off behavior further extends the excitation to near infrared regime (the biological optimal window of 700-1200 nm), and shows more effective sensitivity. The broad excitation wavelength, on/off fluorescence and high selectivity to Cr3+ enable FD8 to be a powerful Cr3+ cation sensor with potential application, especially in biological detection. To the best of our knowledge, this is the first report about two-photon fluorescent sensor for Cr3+ ions.  相似文献   

3.
A novel pyrazoline with benzimidazole substituent was conveniently synthesized, starting from a chalcone and 2-hydrazinylpyridine. The addition of Ni2+ to ethanol solution of the synthesized pyrazoline resulted in a rapid color change from blue to green which allows the selective detection of Ni2+ ion over a great number of other metal ions. The association constant for the 1:1 complex was determined to be 2.72 × 107 M?1.  相似文献   

4.
Tae-Ki Kim 《Tetrahedron letters》2008,49(33):4879-4881
A new fluorescent sensor (1) based on a coumarin was synthesized for the selective detection of homocysteine (Hcy) and cysteine (Cys). The chemosensor has shown a selective response to Hcy or Cys over other various amino acids via a ring formation of thiazinane or thiazolidine. When Hcy or Cys was added, the fluorescent intensity of 1 was completely quenched through a photo-induced electron transfer with the sensitivity of sub-millimolar concentration.  相似文献   

5.
This review summarized the recent advances in small-molecule two-photon fl uorescent probes for monitoring a wide variety of biomolecules and changes inside micro-environment in mitochondria and lysosomes, or served as mitotracker and lysotracker with the assistance of two-photon microscopy.  相似文献   

6.
The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu2+ was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu2+, sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu2+ concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu2+ in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu2+ in living cells.  相似文献   

7.
《中国化学快报》2020,31(11):2913-2916
Palladium(0) as one of the vital transition metals, is employed in numerous industries, such as drug synthesis, aerospace high-tech field and automobile industry. When the Pd(0) enter into the body, it will bind with thiol-containing amino acids, DNA, RNA, and other biomolecules damaging to human health. Thus, developing a novel tool for monitoring and imaging of Pd(0) in vivo is very urgent. In the work, based on a intramolecular charge transfer (ICT) mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0). In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0) in 30 min in the aqueous solution with a detection limit of 16 nmol/L. It also showed the outstanding selectivity and antijamming performance. More importantly, NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0) in living cells and mice.  相似文献   

8.
A new two-photon fluorescent probe, ADNO, for nitric oxide (NO) based on intramolecular photoinduced electron transfer (PET) mechanism d/splays a rapid response to NO with a remarkable fluorescent enhancement in PBS buffer. The excellent chemoselectivity of ADNO for NO over other ROS/RNS (reactive oxygen species or nitrogen species) and common metal ions was observed. Moreover, ADNO has been successfully applied in fluorescence imaging of NO of living cells using both one-photon microscopy (OPM) and two-~hoton microscopy (TPM),  相似文献   

9.
Palladium(0) as one of the vital transition metals, is employed in numerous industries, such as drug synthesis, aerospace high-tech field and automobile industry. When the Pd(0) enter into the body, it will bind with thiol-containing amino acids, DNA, RNA, and other biomolecules damaging to human health. Thus, developing a novel tool for monitoring and imaging of Pd(0) in vivo is very urgent. In the work, based on a intramolecular charge transfer (ICT) mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0). In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0) in 30 min in the aqueous solution with a detection limit of 16 nmol/L. It also showed the outstanding selectivity and antijamming performance. More importantly, NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0) in living cells and mice.  相似文献   

10.
A novel compound FD1 was demonstrated as a turn-on fluorescent sensor for imaging of iron(III) ion in biological samples. Based on the spirolactam (nonfluorescence) to ring-open amide (fluorescence) equilibrium, FD1 exhibited high selectivity and sensitivity for Fe3+ over other metal ions. Moreover, fluorescent microscopy experiments further established that FD1 could be used for sensing Fe3+ within living cells.  相似文献   

11.
Tracking of Hg2+ in solutions as well as in living cells was conducted with a fluorescent chemodosimeter by measuring the spectral shift of its fluorescence under single- or two-photon excitation. The spectral hypsochromic shifts of this chemodosimeter when reacting with Hg2+ were found to be about 50 nm in acetonitrile/water solutions and 32 nm in Euglena gracilis 277 living cells. This chemodosimeter shows high sensitivity and selectivity, and is not influenced by the pH values. It can signal Hg2+ in solutions down to the ppb range under either single-photon excitation (SPE) at 405 nm or two-photon excitation (TPE) at 800 nm. However, with low cellular chemodosimeter concentrations, the SPE spectra were disturbed by the auto-fluorescence from the native fluorophore in the cell, while the TPE spectra were still of high quality since the two-photon absorption cross section of this chemodosimeter is much larger than that of the native fluorophores in the cell.  相似文献   

12.
A novel BINOL-pyrene derivative sensor 1 for Ag+ and Hg2+ incorporating the triazole moieties and pyrenes was synthesized via click reaction. Binding of Ag+ ion induces the formation of 1:1 Ag+-1 chelating complex, and occurs in a ratiometric manner through an enhanced monomer and declining excimer emission, which make it possible to ratiometrically detect Ag+. The competitive experiment shows 1 can be used as an Ag+ specific fluorescence sensor over a wide range of competing cations. In the meanwhile, the sensor 1 was found to be selectively quenched by only Hg2+ at both monomer and excimer emission. Furthermore, we obtained evidences for different fluorescence signaling behaviors with Ag+ and Hg2+ by 1H NMR titration experiments.  相似文献   

13.
An ESIPT-based fluorescent probe (Probe 1) using acrylate as recognition group for the selective and sensitive detection of cysteine/homocysteine (Cys/Hcy) has been developed. In the presence of Cys/Hcy, this probe was transformed into 1,3-bis(bispyridin-2ylimino)isoindolin-4-ol (dye 4) which displayed red fluorescence with a large Stokes shift (217 nm) when excited. The detection limits are as low as 5.4 nM and 7.0 nM for Cys and Hcy respectively (based on S/N = 3). Importantly, this probe has been successfully demonstrated for the detection of intracellular Cys/Hcy in living cells.  相似文献   

14.
A chlorinated coumarin-aldehyde was developed as a colorimetric and ratiometric fluorescent probe for distinguishing glutathione (GSH), cystenine (Cys) and homocysteine (Hcy). The GSH-induced substitution-cyclization and Cys/Hcy-induced substitution-rearrangement cascades lead to the corresponding thiol-coumarin-iminium cation and amino-coumarin-aldehyde with distinct photophysical properties. The probe can be used to simultaneously detect GSH and Cys/Hcy by visual determination based on distinct different colors – red and pale-yellow in PBS buffer solution by two reaction sites. From the linear relationship of fluorescence intensity and biothiols concentrations, it was determined that the limits of detection for GSH, Hcy and Cys are 0.08, 0.09 and 0.18 μM, respectively. Furthermore, the probe was successfully used in living cell imaging with low cell toxicity.  相似文献   

15.
An amphiphilic oligo p-phenylene derivative (DCHO) bearing electron-donating group (–NH(CH2)2OH) and electron-withdrawing group (–CHO) has been synthesised and characterised. The sensing characteristics of this probe (DCHO) for cysteine (Cys) and homocysteine (Hcy) are studied in a mixture solution of DMSO–HEPES by UV–vis and fluorescence spectra. 1H NMR, MALDI-TOF and UV–vis titration experiments proved that thiazolidine and thiazinane derivatives were formed. The highly Cys/Hcy-selective fluorescence hypsochromic shift (>110 nm) can be observed due to the switching of intramolecular charge transfer, leading to potential fabrication of ratiometric fluorescent detection of Cys/Hcy.  相似文献   

16.
《中国化学快报》2019,30(11):1984-1988
Two highly emissive pyrenoviologen derivatives were synthesized and used to fabricate fluorescent sensors for detection of picric acid(PA) with good sensitivity and selectivity.The sensitivity of the sensor was attributed to the specific electrostatic association effect of the cationic pyrenoviologens to the picrate anions,which also gave the sensor special selectivity among other compounds with similar structure.The electron transfer between them was attributed to the fluorescence response.Fluorescence lifetime measurements revealed that the quenching is static in nature.The novel and efficient pyrenoviologen derivatives-based sensors offered a strategy to fabricate real-life PA sensor.  相似文献   

17.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

18.
A chiral Schiff-base compound, 4-methyl-2,6-bis-[(2-hydroxy-1-phenylethylimino)methyl]phenol, is found to act as highly enantioselective fluorescent agent for α-hydroxycarboxylic acid, e.g., mandelic acid. It is observed that, within a certain concentration range, one enantiomer of the chiral acid can increase the fluorescence intensity of the Schiff-base compound 122-fold while the other enantiomer enhances the intensity only 42-fold. Such highly enantioselective responses towards the chiral acid make the unusual Schiff-base compound attractive as a fluorescent sensor for determining the enantiomeric composition of α-hydroxycarboxylic acids.  相似文献   

19.
Two highly emissive pyrenoviologen derivatives were synthesized and used to fabricate fluorescent sensors for detection of picric acid (PA) with good sensitivity and selectivity.  相似文献   

20.
An extremely sensitive monoboronic acid based fluorescent sensor for glucose was developed. This was carried out by assembling a fluorescent monoboronic acid, 3-aminophenylboronic acid (PBA) indirectly onto gold surface via its electrostatic interaction with cysteine (Cys) that was directly assembled on the gold surface. The formation of self-assembled bilayers (SAB) was confirmed and primarily characterized by cyclic voltammetry and X-ray photoelectron spectra (XPS). The SAB containing PBA was found fluorescent and its fluorescence showed an extremely high sensitivity to the presence of glucose and other monosaccharides such as galactose and fructose with quenching constants at 108 M−1 order of magnitude compared to those at 102 M−1 in bulk solutions. The quenching constants were found to vary in the order of that is different from that in bulk solution which shows the highest binding affinity toward d-fructose and very low sensitivity toward glucose. The reported monoboronic acid based SAB fluorescent sensor showed the highest sensitivity towards glucose with the capacity of detecting saccharides of concentration down to nanomolar level. It was also demonstrated that the fluorescence from PBA/Cys/Au can be easily recovered after each measurement event and therefore also represents a new reusable method for immobilizing reagent in fabricating chemosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号