首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3,3,4,4-benzophenonetetracarboxylic dianhydride (4,4-carbonyldiphthalic anhydride) (1) was reacted with l-phenylalanine (2) in a mixture of acetic acid and pyridine (3:2) and the resulting imide-acid [N,N-(4,4-carbonyldiphthaloyl)-bis-l-phenylalanine diacid] (4) was obtained in high yield. The compound (4) was converted to the N,N-(4,4-carbonyldiphthaloyl)-bis-l-phenylalanine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diamines such as 4,4-diaminodiphenyl methane (6a), 2,4-diaminotoluene (6b), 4,4-sulfonyldianiline (6c), p-phenylenediamine (6d), 4,4-diaminodiphenylether (6e), m-phenylenediamine (6f), benzidine (6g) and 2,6-diaminopyridine (6h) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o-cresol. The polymerization reactions proceeded rapidly, compared with the conventional solution polycondensation, and was completed within 7 min, producing a series of optically active poly(amide-imide)s with high yield and inherent viscosity of 0.22-0.52 dl/g. All of the above polymers were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of this optically active poly(amide-imide)s are reported.  相似文献   

2.
A set of isomeric para- and meta-trimethylsilylphenyl ortho-substituted N,N-phenyl α-diimine ligands [(Ar-NC(Me)-(Me)CN-Ar) Ar=2,6-di(4-trimethylsilylphenyl)phenyl (16); Ar=2,6-di(3-trimethylsilylphenyl)phenyl (17)] have been synthesized through a two-step procedure. The palladium-catalysed cross-coupling reaction between 2,6-dibromophenylamine (7) and 4-trimethylsilylphenylboronic acid (8), 3-trimethylsilylphenylboronic acid (9) was used to prepare 4,4-bis(trimethylsilyl)-[1,1;3,1″]terphenyl-2-ylamine (10) and 3,3-bis(trimethylsilyl)-[1,1;3,1″]terphenyl-2-ylamine (11). The di-1-adamantylphosphine oxide Ad2P(O)H (13) and di-tert-butyl-trimethylsilylanylmethylphosphine tert-Bu2P-CH2-SiMe3 (14) were used for the first time as ligands for the Suzuki coupling. The condensation of 2,2,3,3-tetramethoxybutane (15) with anilines 10 and 11 afforded α-diimines 16 and 17. The reaction of π-allylnickel chloride dimer (18), α-diimines (16), (17) and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BAF) (19) or silver hexafluoroantimonate (20) led to two sets of isomeric complexes [η3-allyl(Ar-NC(Me)-(Me)CN-Ar)Ni]+ X, [Ar=2,6-di(4-trimethylsilylphenyl)phenyl, X=BAF (3), X=SbF6 (4); Ar=2,6-di(3-trimethylsilylphenyl)phenyl, X=BAF (5), X=SbF6 (6)]. The steric repulsion of closely positioned trimethylsilyl groups in 4 caused the distortion of the nickel square planar coordination by 17.6° according to X-ray analysis.  相似文献   

3.
Two polar phosphinoferrocene ligands, 1′-(diphenylphosphino)ferrocene-1-carboxamide (1) and 1′-(diphenylphosphino)ferrocene-1-carbohydrazide (2), were synthesized in good yields from 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) via the reactive benzotriazole derivative, 1-[1′-(diphenylphosphino)ferrocene-1-carbonyl]-1H-1,2,3-benzotriazole (3). Alternatively, the hydrazide was prepared by the conventional reaction of methyl 1′-(diphenylphosphino)ferrocene-1-carboxylate with hydrazine hydrate, and was further converted via standard condensation reactions to three phosphinoferrocene heterocycles, viz 2-[1′-(diphenylphosphino)ferrocen-1-yl]-1,3,4-oxadiazole (4), 1-[1′-(diphenylphosphino)ferrocen-1-carbonyl]-3,5-dimethyl-1,2-pyrazole (5), and 1-[1′-(diphenylphosphino)ferrocene-1-carboxamido]-3,5-dimethylpyrrole (6). Compounds 1 and 2 react with [PdCl2(cod)] (cod = η22-cycloocta-1,5-diene) to afford the respective bis-phosphine complexes trans-[PdCl2(L-κP)2] (7, L = 1; 8, L = 2). The dimeric precursor [(LNC)PdCl]2 (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1) is cleaved with 1 to give the neutral phosphine complex [(LNC)PdCl(1P)] (9), which is readily transformed into a ionic bis-chelate complex [(LNC)PdCl(12O,P)][SbF6] (10) upon removal of the chloride ligand with Ag[SbF6]. Pyrazole 5 behaves similarly affording the related complexes [(LNC)PdCl(5P)] (12) and [(LNC)PdCl(52O,P)][SbF6] (13), in which the ferrocene ligand coordinates as a simple phosphine and an O,P-chelate respectively, while oxadiazole 4 affords the phosphine complex [(LNC)PdCl(4P)] (11) and a P,N-chelate [(LNC)PdCl(42N3,P)][SbF6] (14) under similar conditions. All compounds were characterized by elemental analysis and spectroscopic methods (multinuclear NMR, IR and MS). The solid-state structures of 1⋅½AcOEt, 2, 7⋅3CH3CN, 8⋅2CHCl3, 9⋅½CH2Cl2⋅0.375C6H14, 10, and 14 were determined by single-crystal X-ray crystallography.  相似文献   

4.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

5.
Four new compounds, 2-hydroxy-6-(12′-hydroxyheptadec-13′(E)-en-1-yl)benzoic acid (1), 2-hydroxy-6-(13′-hydroxyheptadec-11′(E)-en-1-yl)benzoic acid (2), 2-hydroxy-6-(10′-hydroxypentadec-11′(E)-en-1-yl)benzoic acid (3), and 2-hydroxy-6-(11′-hydroxypentadec-9′(E)-en-1-yl)benzoic acid (4) were isolated from the leaves of Ginkgo biloba and the structures of new ginkgolic acids were deduced on the basis of spectroscopic methods and chemical means. Compounds 1 and 2, and 3 and 4 examined as an inseparable mixture of hydroxyl and double bond positional isomers, were ultimately defined by total synthesis. Compounds 14 showed moderate lipid droplets accumulation inhibitory activity on mouse pre-adipocyte cell line, MC3T3-G2/PA6.  相似文献   

6.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

7.
Eight new compounds including 9′-[2-amino-3-(4″-O-methyl-α-rhamnopyranosyloxy) phenyl]nonanoic acid (1), 9′-[2-amino-3-(4″-O-methyl-α-ribopyranosyloxy)phenyl] nonanoic acid (2), 11′-[2-amino-3-(4″-O-methyl-α-rhamnopyranosyloxy)phenyl]undecanoic acid (3), 11′-[2-amino-3-(4″-O-methyl-α-ribopyranosyloxy)phenyl]undecanoic acid (4), 8-(4′-O-methyl-α-rhamnopyranosyloxy)-3,4-dihydroquinolin-2(1H)-one (5), 8-(4′-O-methyl-α-ribopyranosyloxy)-3,4-dihydroquinolin-2(1H)-one (6), 8-(4′-O-methyl-α-rhamnopyranosyloxy)-2-methyquinoline (7), and 8-(4′-O-methyl-α-ribopyranosyloxy)-2-methylquinoline (8) were isolated from Actinomadura sp. BCC27169. The chemical structures of these compounds were determined based on NMR and high-resolution mass spectroscopy. The absolute configurations of these monosaccharides were revealed by the hydrolysis of compounds 7 and 8. Compounds 3 and 8 exhibited antitubercular activity at MIC 50 μg/mL. Only compound 3 showed cytotoxicity against KB cell at IC50 18.63 μg/mL, while other isolated compounds were inactive at tested maximum concentration (50 μg/mL).  相似文献   

8.
Giuseppe Faita 《Tetrahedron》2010,66(16):3024-5854
The asymmetric Friedel-Crafts reaction between methyl (E)-2-oxo-4-aryl-3-butenoates (1a-c) and activated benzenes (2a-d) has been efficiently catalyzed by the ScIII triflate complex of (4′S,5′S)-2,6-bis[4′-(triisopropylsilyl) oxymethyl-5′-phenyl-1′,3′-oxazolin-2′-yl]pyridine (pybox 3). The 4,4-diaryl-2-oxo-butyric acid methyl esters (4) are usually formed in good yields and the enantioselectivity is up to 99% ee. The sense of the stereoinduction can be rationalized with the same octahedral complex (10) between 1, pybox 3 and Sc triflate already proposed for other reactions involving pyruvates, and catalyzed by the same complex.  相似文献   

9.
Pyromellitic dianhydride (benzene-1,2,4,5-tetracarboxylic dianhydride) (1) was reacted with l-leucine (2) in a mixture of acetic acid and pyridine (3:2) and the resulting imide-acid [N,N-(pyromellitoyl)-bis-l-leucine diacid] (4) was obtained in quantitative yield. The compound (4) was converted to the N,N-(pyromellitoyl)-bis-l-leucine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diols such as phenol phthalein (6a), bisphenol-A (6b), 4,4-hydroquinone (6c), 1,8-dihydroxyanthraquinone (6d), 1,5-dihydroxy naphthalene (6e), 4,4-dihydroxy biphenyl (6f), and 2,4-dihydroxyacetophenone (6g) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o-cresol. The polymerization reactions proceeded rapidly and are completed within 10 min, producing a series of optically active poly(ester-imide)s (PEIs) with good yield and moderate inherent viscosity of 0.10-0.27 dl/g. All of the above polymers were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of these optically active PEIs are reported.  相似文献   

10.
Amide coupling between [2-(diphenylphosphino)phenyl]methylamine and 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) afforded a novel diphosphine-amide, 1-{N-[(2-(diphenylphosphino)phenyl)methyl]carbamoyl}-1′-(diphenylphosphino)ferrocene (1), which was subsequently studied as a ligand for palladium(II) complexes. Depending on the metal precursor, the following complexes were isolated: [PdCl2(12P,P′)] (2), [PdCl(Me)(12P,P′)] (3), [(μ-1){PdCl2(PBu3)}2] (4) and [(μ-1){PdCl(LNC)}2] (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1), featuring this ligand either as a trans-chelating or as a P,P′-bridging donor. The crystal structure of 2·1.25CH2Cl2 was established by X-ray crystallography, corroborating that 1 coordinates as a trans-spanning diphosphine without any significant distortion to the coordination sphere. Complex 2 together with a catalyst prepared in situ from 1 and palladium(II) acetate were tested in Suzuki-Miyaura reaction of aryl bromides with phenylboronic acid in dioxane.  相似文献   

11.
2-Phenylaniline reacted with Pd(OAc)2 in toluene at room temperature for 24 h in a one-to-one molar ratio and with the system PdCl2, NaCl and NaOAc in a 1 (2-phenylaniline):1 (PdCl2):2 (NaCl):1 (NaOAc) molar ratio in methanol at room temperature for one week to give the dinuclear cyclopalladated compounds (μ-X)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 [1a (X = OAc) and 1b (X = Cl)] in high yield. Moreover, the reaction between 2-phenylaniline and Pd(OAc)2 in one-to-one molar ratio in acid acetic at 60 °C for 4 h, followed by a metathesis reaction with LiBr, allowed isolation of the dinuclear cyclopalladated compound (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 (1c) in moderate yield. A parallel treatment, but using monodeuterated acetic acid (DOAc) as solvent in the cyclopalladation reaction, allowed isolation of a mixture of compounds 1c, 1cd1 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4](μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3] and 1cd2 (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3}]2 in moderate yield and with a deuterium content of ca. 60%. 1a and 1b reacted with pyridine and PPh3 affording the mononuclear cyclopalladated compounds [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(X)(L)] [2a (X = OAc, L = py), 2b (X = Cl, L = py), 3a (X = OAc, L = PPh3) and 3b (X = Cl, L = PPh3)] in a yield from moderate to high. Furthermore, 1a reacted with Na(acac) · H2O to give the mononuclear cyclopalladated compound 4 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(acac)] in moderate yield. 1H NMR studies in CDCl3 solution of 2a, 2b, 3a, 3b and 4 showed that 2a and 3a presented an intramolecular hydrogen bond between the acetato ligand and the amino group, and were involved in a dynamic equilibrium with water present in the CDCl3 solvent; and that the enantiomeric molecules of 2b and 4 were in a fast exchange at room temperature, while they were in a slow exchange for 2a, 3a and 3b. The X-ray crystal structures of 3b and 4 were determined. 3b crystallized in the triclinic space group with a = 9.9170(10), b = 10.4750(10), c = 12.0890(10) Å, α = 98.610(10)°, β = 94.034(10)° and γ = 99.000(10)° and 4 in the monoclinic space group P21/a with a = 11.5900(10), b = 11.2730(10), c = 12.2150(10) Å, α = 90°, β = 107.6560(10)° and γ = 90°.  相似文献   

12.
Shin-ichi Naya 《Tetrahedron》2008,64(14):3225-3231
As novel methodology for synthesizing the furan ring, a photoinduced oxidative cyclization of 5-(4′,9′-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-triones (7a-c) and related compounds 9a-c was accomplished to give 5,10-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1,3H)-dionylium tetrafluoroborates (8a-c+·BF4) and related compounds 2a-c+·BF4, respectively. In the photoinduced oxidative cyclization, the molecular oxygen in air is used as oxidant and the reaction proceeds under mild conditions to give desired products without byproducts, and thus, it is interesting from the viewpoint of the green chemistry. On the reactions of the mono-substituted derivatives 7d,e and 9e,f, the selectivity of the photoinduced cyclizations were reversed as compared with those of the DDQ-promoted oxidative cyclizations. By the NMR monitoring of the reactions of 7a and deuterated compound 7a-D2 under degassed conditions, the details of the reaction pathway were clarified and rationalized on the basis of the MO calculation by the 6-31G basis set of the MP2 levels as well.  相似文献   

13.
A series of cobalt(II) complexes having terpyridine derivatives such as 2,2:6,2″-terpyridine (1), 4,4,4″-tBu3-2,2:6,2″-terpyridine (2), 5,5″-Me2-2,2:6,2″-terpyridine (3), 6,6″-Me2-2,2:6,2″-terpyridine (4) and 6,6″-(3,5-Me2C6H3)2-2,2:6,2″-terpyridine (5) was synthesized. The structures of 1, 3, and 4 were confirmed by X-ray crystallography. The coordination sphere around the cobalt center in 1 can be described as pseudo square pyramidal. On the other hand, complex 4 has pseudo trigonal bipyramidal structure. Upon activation with d-MAO (dried-methylaluminoxane), these complexes showed high activities for the polymerization of norbornene (NBE). In particular, polymerization of NBE with 4/d-MAO system at room temperature resulted in quantitative yield within several hours to give the polymers with relatively narrow molecular weight distributions and controlled molecular weight. The polymerizations of NBE with these cobalt catalyst systems proceeded in vinyl addition polymerization, which was confirmed by 1H NMR spectra of the resulting polymers.  相似文献   

14.
The preparation of iodo acid [closo-1-CB9H8-1-COOH-10-I] (1) is optimized and scaled from 1 to 40 g of B10H14. The improved preparation of the [arachno-6-CB9H13-6-COOH] (5) uses four times smaller volume and can be run conveniently in up to 40 g scale in a 3-L vessel. The optimized oxidation of 5 to [closo-2-CB9H9-2-COOH] (4) requires less oxidant, 12 times smaller volume, and significantly shorter reaction time. The overall yields of the iodo acid 1 as the [NMe4]+ salt are typically 8-10% (10-12 g) for 40 g of B10H14. The iodo acid 1 was transformed to amino acid 8, then to dinitrogen acid 10, and finally to sulfonium acid 2[3] in overall yield of about 13%. The search for a more efficient phosphine ligand for the Pd-catalyzed amination process was not fruitful. Three routes to the sulfonium acid 2[n] were investigated, and the best yield of about 47% was obtained for Cs2CO3-assisted cycloalkylation. Liquid crystalline ester of acid 2[3] and 4-butoxyphenol was prepared and investigated.  相似文献   

15.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

16.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

17.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

18.
1,8-Naphthyridine (napy) and terpyridine-analogous (N,N,C) tridentate ligands coordinated ruthenium (II) complexes, [RuL(napy-κ2N,N′) (dmso)](PF6)2 (1: L=L1=N″-methyl-4′-methylthio-2,2′:6′,4″-terpyridinium, 2: L = L2 = N″-methyl-4′-methylthio-2,2′:6′,3″-terpyridinium) were prepared and their chemical and electrochemical properties were characterized. The structure of complex 1 was determined by X-ray crystallographic study, showing that it has a distorted octahedral coordination style. The cyclic voltammogram of 1 in DMF exhibited two reversible ligand-localized redox couples. On the other hand, the CV of 2 shows two irreversible cathodic peaks, due to the Ru-C bond of 2 containing the carbenic character. The IR spectra of 1 in CO2-saturated CH3CN showed the formation of Ru-(η1-CO2) and Ru-CO complexes under the controlled potential electrolysis of the solution at −1.44 V (vs. Fc/Fc+). The electrochemical reduction of CO2 catalyzed by 1 at −1.54 V (vs. Fc/Fc+) in DMF-0.1 M Me4NBF4 produced CO with a small amount of HCO2H.  相似文献   

19.
《Tetrahedron》2011,67(50):9729-9735
[3+2] Cycloadditions of (1Z,4R,5R)-1-arylmethylidene-4-benzoylamino-3-oxo-5-phenylpyrazolidin-1-ium-2-ides 1a-e to methyl methacrylate gave the 1-CO2Me regioisomers 3/3′, exclusively, in 1-67% yields. Stereocontrol was dependent on the ortho-substituents at the 1′-aryl group in dipole 1: ortho-unsubstituted dipoles 1a-c gave the major (1R,3R,5R,6R)-isomers 3a-c, whilst ortho-disubstituted dipoles gave the major (1R,3S,5R,6R)-isomers 3′d,e. The structures of cycloadducts were determined by NMR and X-ray diffraction.  相似文献   

20.
Two bisphosphite ligands, 25,27-bis-(2,2′-biphenyldioxyphosphinoxy)-26,28-dipropyloxy-p-tert-butyl calix[4]arene (3) and 25,26-bis-(2,2′-biphenyldioxyphosphinoxy)-27,28-dipropyloxy-p-tert-butyl calix[4]arene (4) and two monophosphite ligands, 25-hydroxy-27-(2,2′-biphenyldioxyphosphinoxy)-26,28-dipropyloxy-p-tert-butyl calix[4]arene (5) and 25-hydroxy-26-(2,2′-biphenyldioxyphosphinoxy)-27,28-dipropyloxy- p-tert-butyl calix[4]arene (6) have been synthesized. Treatment of (allyl) palladium precursors [(η3-1,3-R,R′-C3H4)Pd(Cl)]2 with ligand 3 in the presence of NH4PF6 gives a series of cationic allyl palladium complexes (3a-3d). Neutral allyl complexes (3e-3g) are obtained by the treatment of the allyl palladium precursors with ligand 3 in the absence of NH4PF6. The cationic allyl complexes [(η3-C3H5)Pd(4)]PF6 (4a) and [(η3-Ph2C3H3)Pd(4)]PF6 (4b) have been synthesized from the proximally (1,2-) substituted bisphosphite ligand 4. Treatment of ligand 4 with [Pd(COD)Cl2] gives the palladium dichloride complex, [PdCl2(4)] (4c). The solid-state structures of [{(η3-1-CH3-C3H4)Pd(Cl)}2(3)] (3f) and [PdCl2(4)] (4c) have been determined by X-ray crystallography; the calixarene framework in 3f adopts the pinched cone conformation whereas in 4c, the conformation is in between that of cone and pinched cone. Solution dynamics of 3f has been studied in detail with the help of two-dimensional NMR spectroscopy.The solid-state structures of the monophosphite ligands 5 and 6 have also been determined; the calix[4]arene framework in both molecules adopts the cone conformation. Reaction of the monophosphite ligands (5, 6) with (allyl) palladium precursors, in the absence of NH4PF6, yield a series of neutral allyl palladium complexes (5a-5c; 6a-6d). Allyl palladium complexes of proximally substituted ligand 6 showed two diastereomers in solution owing to the inherently chiral calix[4]arene framework. Ligands 3, 6 and the allyl palladium complex 3f have been tested for catalytic activity in allylic alkylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号