首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A peptide containing a cysteinyl prolyl ester (CPE) moiety at the C-terminus (CPE peptide) is spontaneously transformed into a diketopiperazine thioester via an intramolecular N-S acyl shift reaction, followed by diketopiperazine formation. The CPE peptide can be ligated with a Cys-peptide in a one-pot procedure. The peptide diketopiperazine thioester can also be transformed into a peptide thioester by intermolecular thiol-thioester exchange with external thiol compounds such as sodium mercaptoethanesulfonate. Since CPE peptides can be prepared by standard Fmoc solid-phase synthesis, it is a versatile alternative to the peptide thioester, providing a flexible ligation strategy that promises to be useful in polypeptide synthesis.  相似文献   

2.
Here, we reported a new approach of on-resin peptide ligation using C-terminal benzyl ester as the stabilized precursor of thioester, which enables both N-terminal elongation and C-terminal peptide ligation on a Rink Amide resin.  相似文献   

3.
Human adiponectin(19–107), which consists of the variable region and the collagenous domain bearing post-translational modifications including glycosylation, was chemically synthesized for the first time. A glycoside of 5-hydroxylysine (Hyl) was incorporated using an α-d-glucopyranosyl-(1→2)-β-d-galactopyranosyl/Hyl-Gly building block in a benzyl-protected form by solid-phase peptide synthesis (SPPS). The molecule was assembled from four segments prepared by SPPS via native chemical ligation (NCL) and thioester methods.  相似文献   

4.
N‐Sulfanylethylanilide (SEAlide) peptides were developed with the aim of achieving facile synthesis of peptide thioesters by 9‐fluorenylmethyloxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (Fmoc SPPS). Initially, SEAlide peptides were found to be converted to the corresponding peptide thioesters under acidic conditions. However, the SEAlide moiety was proved to function as a thioester in the presence of phosphate salts and to participate in native chemical ligation (NCL) with N‐terminal cysteinyl peptides, and this has served as a powerful protein synthesis methodology. The reactivity of a SEAlide peptide (anilide vs. thioester) can be easily tuned with or without the use of phosphate salts. This interesting property of SEAlide peptides allows sequential three‐fragment or unprecedented four‐fragment ligation for efficient one‐pot peptide/protein synthesis. Furthermore, dual‐kinetically controlled ligation, which enables three peptide fragments simultaneously present in the reaction to be ligated in the correct order, was first achieved using a SEAlide peptide. Beyond our initial expectations, SEAlide peptides have served in protein chemistry fields as very useful crypto‐peptide thioesters. DOI 10.1002/tcr.201200007  相似文献   

5.
The sequential chemical ligation of peptide thioesters by a combination of the thioester method and extended chemical ligation using a photoremovable auxiliary, 2-mercapto-1-(2-nitrophenyl)ethyl group, is described. The thiazolidine ring was used as a protecting group for the N-terminal 1,2-aminoethanethiol moiety of the auxiliary in the middle peptide thioester. After the first thioester coupling, the thiazolidine ring was opened by treatment with O-methylhydroxylamine. Second coupling by extended chemical ligation followed by UV irradiation gave the target polypeptide.  相似文献   

6.
α‐Ketoacid‐hydroxylamine (KAHA) ligation allows the coupling of unprotected peptide segments through the chemoselective formation of an amide bond. Currently, the most widely used variant employs a 5‐membered cyclic hydroxylamine that forms a homoserine ester as the primary ligation product. In order to directly form amide‐linked threonine residues at the ligation site, we prepared a new 4‐membered cyclic hydroxylamine building block. This monomer was applied to the synthesis of wild‐type ubiquitin‐conjugating enzyme UbcH5a (146 residues) and Titin protein domain TI I27 (89 residues). Both the resulting UbcH5a and the variant with two homoserine residues showed identical activity to a recombinant variant in a ubiquitination assay.  相似文献   

7.
Preparation of peptide thioester is essential for native chemical ligation and block condensation. Our novel methodology involves conversion of the carboxylic acid of a peptide into a thioester using p-toluenesulfonyl isocyanate, followed by alkylation, then thiol substitution. Our methodology can also be used for the preparation of glycopeptide thioesters. Furthermore, it is possible to carry out the reaction as a sequential peptide chemical ligation.  相似文献   

8.
Artificial synthesis and site-specific modification of peptides and proteins have evolved into an indispensable tool for protein engineers and chemical biologists. Chemical and enzymatic approaches to peptide ligation are important alternatives of recombinant DNA technology for protein synthesis and modification. In the past decades, several natural peptide ligases have been discovered. Additionally, protein engineering for improving the ligation efficiencies of the natural peptide ligase and reversing the functionality of protease have provided more powerful peptide ligases. Herein, we briefly summarized the advances of enzyme-mediated peptide ligation and their application in protein synthesis and modification.  相似文献   

9.
A new approach is described for the general Fmoc-based solid-phase synthesis of C-terminal peptide (thio)esters. One hydroxy group of 2,2-dithiodiethanol (used in large excess) was anchored on trityl resin, and the remaining hydroxy group was loaded with the first amino acid. Standard chain elongation and TFA-based peptide release yielded peptide C-terminal dithiodiethanol esters in good purities. Under standard conditions of native chemical ligation (excess thiol, neutral pH), the dithiodiethanol function is presumably reduced and rearranged (or equilibrated) to the thioester via a 5-membered intermediate. The resulting thioesters are shown to undergo native chemical ligation with N-terminal cysteine peptides. Notably, hydrolysis of the reduced ester is a major competing reaction, especially in the presence of 6 M guanidinium chloride, which is often required for solubilization of large peptide fragments.  相似文献   

10.
The ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was successfully used as alternative solvent for native chemical ligation of peptide fragments to produce model peptide LYRAXCRANK (X = G, A, L, N, Q, K, and F). The commonly used buffer system including thiol additives such as thiophenol and benzyl mercaptan can be replaced by the nontoxic ionic liquid [C2mim][OAc]. In addition to improving the solubility of the peptides in [C2mim][OAc], yields and rates of the ligation reactions were found to be efficiently enhanced.  相似文献   

11.
The native chemical ligation reaction of peptide thioesters with cysteinyl peptides is a pivotal chemical process in the production of native or modified peptides and proteins, and well beyond in the preparation of various biomolecule analogs and materials. To benefit from this reaction at its fullest and to access all the possible applications, the experimentalist needs to know the factors affecting its rate and how to control it. This concept article presents the fundamental principles underlying the rate of the native chemical ligation and its homogeneous catalysis by nucleophiles. It has been prepared to serve as a quick guide in the search for an appropriate catalyst.  相似文献   

12.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one-pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N-masking group of the N-terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o-aminoanilide. The ready availability of Fmoc-Cys(Trt)-OH, which is routinely used in Fmoc solid-phase peptide synthesis, where the Fmoc group is pre-installed on cysteine residue, minimizes additional steps required for the temporary protection of the N-terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

13.
We previously reported that the peptide containing a Cys-Pro ester (CPE) moiety is spontaneously transformed into a peptide thioester via an N to S acyl shift followed by diketopiperazine formation. In an attempt to identify more reactive structures for the formation of a peptide thioester, we modified the CPE structure, in which the Pro residue in the CPE moiety was replaced with N-substituted glycine derivatives. These peptides were transformed into a peptide thioester more rapidly. Alternatively, the addition of an amino acid residue at the C-terminus of the CPE moiety also accelerated thioester formation.  相似文献   

14.
The NY-ESO-1 (A39-A68) peptide hydrazide was prepared through 9-fluorenyl-methoxycarbonyl solid-phase peptide synthesis (Fmoc SPPS) from a new 9-fluorenyl-methoxycarbonyl hydrazine 2-chlorotrityl chloride (Fmoc-hydrazine 2CTC) resin. The new resin was ideal for long-term storage and usage in Fmoc SPPS. Besides, the title peptide hydrazide could be transformed nearly quantitatively into the corresponding peptide thioester, which was both isolable and usable directly in native chemical ligation (NCL).  相似文献   

15.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one‐pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N‐masking group of the N‐terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o‐aminoanilide. The ready availability of Fmoc‐Cys(Trt)‐OH, which is routinely used in Fmoc solid‐phase peptide synthesis, where the Fmoc group is pre‐installed on cysteine residue, minimizes additional steps required for the temporary protection of the N‐terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

16.
The synthesis of lipid core peptide (LCP) vaccines using stepwise solid-phase peptide synthesis commonly results in products which are difficult to purify to homogeneity. A new technique for synthesizing highly-pure, mono-epitopic, multi-valent LCP-systems using native chemical ligation is presented. Various conditions were assessed for ligating four copies of a thioester-modified 88/30 serotype group A streptococcal peptide antigen onto an LCP-system featuring four cysteine residues. Overall, the vaccine was synthesized in high purity (>99%), and high yield (90%) when the ligation reaction was performed in the presence of 1% sodium dodecyl sulfate and at elevated temperatures (37 °C).  相似文献   

17.
A new method for α-bungarotoxin was reported by combining Fmoc-SPPS and peptide hydrazide based ligat ion strategy.  相似文献   

18.
The reaction of a peptide featuring a bis(2-sulfanylethyl)amino (SEA) group on its C-terminus with a cysteinyl peptide in water at pH 7 and 37 °C leads to the chemoselective and regioselective formation of a native peptide bond. This method called SEA ligation enriches the native peptide ligation repertoire available to the peptide chemist. Preparation of an innovative solid support which allows the straightforward synthesis of peptide SEA fragments using standard Fmoc/tert-butyl solid phase peptide synthesis procedures is also described.  相似文献   

19.
Here, we report a new strategy for rapid synthesis of branched peptide by side-chain hydrazide ligation at Asn. The hydrazide was converted to thioester at Asn side chain by NaNO2 and thiol reagent, and sequential ligation with an N-terminus Cys-peptide efficiently afforded the branched peptide. A branched cyclic peptide was successfully synthesized by side-chain ligation with a two-Cys-peptide and formation of a disulfide bond. This approach provides a new way for expeditious synthesis of branched peptides and facilitates the design of neopeptides as functional bio-mimics.  相似文献   

20.
Protein chemical synthesis can provide the homogeneous atypical ubiquitin chains that are usually difficult to obtain by other methods. Herein, we report a new one-pot ligation approach for the synthesis of atypical Ub chains based on the Tfacm-protected isoUb building block with operational simplicity and high efficiency. The key intermediate, the Tfacm-protected isoUb building block can be readily prepared by Fmoc SPPS. The practicality and efficiency of the new method is demonstrated by the successful preparation of K11-linked di-Ub.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号