首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kazuhiro Yoshizawa 《Tetrahedron》2004,60(35):7767-7774
The complete simultaneous and mutual enantiomer resolution of 2,2′-dihydroxy-1,1′-binaphthyl (BNO) and N-(3-chloro-2-hydroxypropyl)-N,N,N-trimethylammonium chloride, Me3N+CH2CH(OH)CH2Cl·Cl into their enantiomers by inclusion complexation between their racemates in EtOH in the presence of a chiral seed crystal is reported. The enantiomer resolution of the rac-BNO was also accomplished easily by inclusion complexation with achiral ammonium salts, N-(2-hydroxyethyl)-N,N,N-trimethylammonium chloride, Me3N+CH2CH2OH·Cl and tetramethylammonium chloride, Me4N+·Cl. Inclusion complexation of the rac-BNO with Me3N+ CH2CH2OH·Cl gave only a 1:1 conglomerate inclusion complex but not a racemic complex. Recrystallization of the rac-BNO and an equimolar amount of Me4N+·Cl from MeOH (7 ml) and MeOH (15 ml) gave a 1:1:1 racemic complex, BNO·Me4N+·Cl·MeOH and a 1:1 conglomerate complex, BNO·Me4N+·Cl, respectively. Novel transformation of the former racemate into the latter conglomerate occurred by heating or by exposure to MeOH vapor in the solid state.  相似文献   

2.
The rearrangement of a trichloro-pyrrolidin-2-one, prepared by the CuCl-TMEDA catalyzed atom transfer radical cyclization of N-alkyl-N-(3-chloro-2-propenyl)-2,2-dichloromyristamide, with n-propylamine or CH3ONa/CH3OH, is the key step of a new, short and inexpensive route to chaetomellic anhydride C and (±)-erythro-roccellic acid.  相似文献   

3.
Abstract

A series of 3-(N-arylmethyl-N-hydroxyamino)-l,2-O-cyclopentylidene-3-deoxy-5-O-toluoyl-α-D-riboses has been prepared. The blocking groups used were chosen to allow an easy nucleosidation of these compounds to spin labelled analogs of natural nucleosides. The conformational behavior of the N-arylmethyl-N-hydroxyamino group has been studied using 3/CH NMR coupling data and molecular mechanics computations. Upon spontaneous oxidation, these hydroxylamines led to the corresponding aminoxyl free radicals which were submitted to EPR spectroscopy and quantum mechanical computations at a semiempirical level (PM3).  相似文献   

4.
The reaction of N-(1-methylbut-2-en-1-yl)-2-iodaniline with Ac2O or ClCH2C(O)Cl results in a mixture of syn- and anti-atropisomers of N-acetyl- and N-chloroacetyl-N-(1-methylbut-2-en-1-yl)-2-iodaniline in a ratio of 1:1. Ozonolysis of the latter followed by reduction with dimethyl sulfide in CH2Cl2 gives rise to the atropisomers mixture of 2-[N-(chloroacetyl)-N-(2-iodophenyl)]aminopropanal in a ratio of 1:3. When heated in boiling benzene, the mixture of atropoisomeric aldehydes reacts with triphenylphosphine to afford a mixture of 2-[(N-acetyl)-N-(2-iodophenyl)]aminopropanal atropisomers in 1:3 ratio.  相似文献   

5.
Abstract

The reactions of cyclotriphosphazene (1) with 2-(2-hydroxyethylamino)-ethanol (2) were investigated. 2-(2-hydroxyethylamino)-ethanol (2) is a tri-functional reagent consisting of both aliphatic hydroxyl and the secondary amino groups and its nucleophilic substitution reactions with cylotriphosphazene can lead to different product types; open chain, spiro, ansa, bridged and their mixtures. The reactions with one, two and three equimolar ratios of 2-(2-hydroxyethylamino)-ethanol, in the presence of NaH at 0–10?°C and at room temperature gave the following cyclotriphosphazene derivatives: one mono-spiro, N3P3Cl4[O–(CH2)2–NH–(CH2)2–O] (3, 1:1, r.t.); its isomer mono-ansa (5, 1:1, r.t.); one dispiro, N3P3Cl2[O–(CH2)2–NH–(CH2)2–O]2 (4, 1:1, r.t.); its isomer spiro-ansa (6, 1:2, r.t.); and one single-bridged compound with spiro substituted units, N3P3Cl3[O–(CH2)2–NH–(CH2)2–O]3N3P3Cl3 (7, 1:3, at 0–10?°C); as well as single-, N3P3Cl5[O–(CH2)2–NH–(CH2)2–O]N3P3Cl5 (8, 1:2, r.t.), double-, N3P3Cl4[O–(CH2)2–NH–(CH2)2–O]2N3P3Cl4 (9, 1:2, r.t.), and tri-bridged, N3P3Cl3[O–(CH2)2–NH–(CH2)2–O]3N3P3Cl3 (10, 1:3, at 0–10?°C) derivatives. Triple-bridged derivative is the major product in this system. The structures of the novel-derived compounds were characterized by TLC-MS, FT-IR, elemental analysis, 1H, and 31P NMR spectral.  相似文献   

6.
A method for preparing haloconduritols having a conduritol-A construction is described. A mixture of endo- and exo-cycloadduct derivatives prepared from the Diels-Alder reaction of furan and vinylene carbonate was converted into diacetate derivatives by hydrolysis (K2CO3/MeOH) followed by acetylation (Ac2O/pyridine). Boron trihalide (BBr3 or BCl3)-assisted ring-opening of the endo-diacetate in CH2Cl2 at −78°C gave (1α,2α,3β,6β)-6-halogeno-4-cyclohexene-1,2,3-triol 1,2-diacetate from which the corresponding triacetate was prepared by acetylation (AcCl). trans-Esterification of the triacetate (MeOH/HCl) afforded (1α,2α,3β,6β)-6-halogeno-4-cyclohexene-1,2,3-triol (X=Br or Cl). BF3-Assisted ring-opening of the endo-diacetate in CH2Cl2 gave (1α,2α,3β,6β)-6-chloro-4-cyclohexene-1,2,3-triol 1,2-diacetate by means of halogen exchange.  相似文献   

7.
In this study, the preparation of novel 7-hydroxy-3-(2-chloro-4-fluorophenyl)coumarin (1), the ligand, 7-(3,4-dicyanophenoxy)-3-(2-chloro-4-fluorophenyl)coumarin (2), metal-free phthalocyanine 3 and metallophthalocyanine complexes 4 and 5 (MPcs, M = Co, Zn), β-substituted with 7-oxo-3-(2-chloro-4-fluorophenyl)coumarin functional group was achieved. By the reaction of 7-hydroxy-3-(2-chloro-4-fluorophenyl)coumarin (1) with 1,2-dicyano-4-nitrobenzen in dry DMF as the solvent in the presence of K2CO3 as the base, the 7-(3,4-dicyanophenoxy)-3-(2-chloro-4-fluorophenyl)coumarin (2) was synthesized. Compound 2 reacted with Co(CH3COO)2·4H2O in 2-N,N-dimethylaminoethanol to furnish a novel coumarin containing cobalt(II) phthalocyanine 4. The cyclotetramerization of 2 with Zn(CH3COO)2·2H2O in 2-N,N-dimethylaminoethanol gave the novel coumarin containing Zn(II)phthalocyanine 5; while tetramerization without any metal salts in 2-N,N-dimethylaminoethanol gave the metal-free phthalocyanine 3. The structures of obtained compounds were confirmed by elemental analysis, UV–Vis, IR, MALDI-TOF mass and 1H NMR spectra. The cyclic and differential pulse voltammetry, and in situ spectroelectrochemistry of 7-oxo-3-(2-chloro-4-fuorophenyl)coumarin substituted phthalocyanines 3, 4 and 5 allowed us to identify metal- and phthalocyanine ring-based redox processes of the complexes.  相似文献   

8.
Reactions of arylacetic acids with N-methoxymethanamine afford corresponding Weinreb amides which at alkenylation with methallyl and prenyl bromides in the presence of (Me3Si)2NNa+ form unsaturated amides ArCHRCONMe(OMe) (R = CH2CMe=CH2, CH2C=CMe2). Amides readily react with BuLi and BnMgCl to give ketones ArCHRCOR' (R' = Bu, Bn). A stereoselective reduction of the latter with LiBH(s-Bu)3 leads to a quantitative formation of syn-isomers of 2-aryl-4-en-1-ols.  相似文献   

9.
Infrared chemiluminescence from HCl has been observed in “arrested relaxation” experiments to yield vibrational and rotational distributions from the reactions H+Cl2, SCl2 and PCl3, where H denotes hydrogen atoms with translational energy of 0.45 eV. The following relative populations were determined: Nv-1: Nv-2: Nv-3: Nv-4: Nv-5: Nv-6 = 0.89:1.00:0.84:0.47:0.26:0.11 for H+Cl2: Nv-1: Nv-2: Nv-3: Nv-4: Nv-5: Nv-6 = 0.80:1.00:0.72:0.48:0.24:0.10 for H+SCl2: Nv-1: Nv-2: Nv-3: Nv-4: Nv-5 = 0.79:1.00:0.88:0.36:0.14 for H+PCl3. In all three reaction systems the chemiluminescence was attributed to the primary chlorine abstraction. Comparison with the results of the thermal processes (0.04 eV hydrogen atoms) led to the following conclusions: for H+Cl2 the excess of translational energy is transformed into translational product energy and rotational energy of the molecule HCl; for H+SCl2 the excess of translational energy is transformed mainly into translational energy of the products and perhaps internal energy of SCl; for H+PCl3 the excess of translational energy allows the observation of the primary abstraction reaction, which could in earlier experiments at 300 K not be separated from secondary chemiluminescent processes. Bimodal rotational distributions were confirmed for several vibrational states of HCl formed in the systems H+Cl2, and H+SCl2. Bimodal rotational distributions were also detected in the chemiluminescent reaction H(0.04 eV)+CH3SCl → HCl(v ? 5)+CH3S.  相似文献   

10.
The interaction of N-(1-aryl-2,2,2-trichloroethyl)amides of arenesulfonic acids with secondary amines or their salts in the presence of inorganic bases involves the formation of chloroaziridine intermediates. Depending upon the solvent and reagent ratio, the reaction results in N-[1-dialkylamino-2-chloro-2-arylethylidene]-, N-[2-dialkylamino-1-chloro-2-arylethylidene]-, N-[1,2-bis(dialkylamino)-2-arylethylidene]-, and N-(1,2-dioxo-2-arylethene)amides of arenesulfonic acids.  相似文献   

11.
Aza-Prins cyclization reaction of N-tosyl-3-butenylamine with aliphatic and aromatic aldehydes was performed using a combination of FeCl3 and 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) or 1-butyl-3-methylimidazolium tetrachloroferrate (BmimFeCl4) in benzotrifluoride (BTF). The desired N-tosyl-4-chloro-2-substituted piperidines were obtained from aliphatic aldehydes in comparable yields to those for the previously reported reactions in which FeCl3 was used in CH2Cl2. On the other hand, significant progress for the piperidine synthesis from aromatic aldehydes has been achieved, particularly when BmimFeCl4 was used with FeCl3 in BTF.  相似文献   

12.
The crystal structures of N-o-hydroxybenzimido-meso-tetraphenylporphyrinatozinc(II) toluene solvate [Zn(N-NCO(o-OH)C6H4-tpp)·C6H5CH3; 4·C6H5CH3], N-o-hydroxybenzimido-meso-tetraphenylporphyrinatonickel(II) chloroform solvate [Ni(N-NCO(o-OH)C6H4-tpp)·0.6CHCl3; 5·0.6 CHCl3], N-o-hydroxybenzimido-meso-tetraphenylporphyrinatocopper(II) toluene solvate [Cu(N-NCO(o-OH)C6H4-tpp)·C6H5CH3; 6·C6H5CH3] and N-o-oxido-benzimido-meso-tetraphenylporphyrinato(-κ4,N1,N2,N3,N5,κO2) manganese (III) methylene chloride·methanol solvate [Mn(N-NCO(o-O)C6H4-tpp)·CH2Cl2·MeOH; 8·CH2Cl2·MeOH] were established. The coordination sphere around Zn2+ ion in 4·C6H5CH3, (or Ni2+ ion in 5·0.6 CHCl3 or Cu2+ ion in 6·C6H5CH3) is a distorted square planar (DSP) whereas for Mn3+ in 8·CH2Cl2·MeOH, it is a distorted trigonal bipyramid (DTBP) with O(1), N(1) and N(3) lying in the equatorial plane for 8·CH2Cl2·MeOH. The g value of 8.27 measured from the parallel polarization of X-band EPR spectra at 293 K is consistent with the high-spin mononuclear manganese(III) (S = 2) in 8. The magnitude of axial (D) zero-field splitting (ZFS) for the mononuclear Mn(III) in 8 was determined approximately as 3.0 cm?1 by the paramagnetic susceptibility measurements and conventional EPR spectroscopy.  相似文献   

13.
A new class of pyridinium, quinolinium, isoquinolinum, and N-methylimidazolium-3-(2,5-dihydro-5-oxofuran-3-yl)-4-hydroxyfuran-2(5H)-one salts have been prepared in high yields by reacting pyridine, quinoline, isoquinoline, N-methylimidazole, 1,4-diazabicyclo[2.2.2]octane, and their derivatives with tetronic acid in CH2Cl2.  相似文献   

14.

Anion-radical salts of 7,7,8,8-tetracyanoquinodimethane (TCNQ) with N-methyl-2-amino-5-chloropyridinium and N-methyl-2-chloro-3-aminopyridinium cations of simple and complex compositions were synthesized and studied. The salt (N?CH3?2?Cl3NH2?Py)(TCNQ) is electrically conducting and thermally stable up to 340°C. This enables use of this anion-radical salt in electronics of organic materials.

  相似文献   

15.
The C-2 sulfonamido pyrimidine nucleosides were prepared by opening the 2,2′- or 2,3′-bond in anhydronucleosides under nucleophilic attack of sulfonamide anions. Reaction of the sodium salt of p-toluenesulfonamide or 2-(aminosulfonyl)-N,N-dimethylnicotinamide with 2,2′-anhydro-1-(β-d-arabinofuranosyl)cytosine gave the C-2 sulfonamido derivatives in excellent yields. Ring opening of the less reactive 2,2′-anhydrouridine and 2,3′-anhydrothymidine could be accomplished with DBU/CH3CN activation of p-toluenesulfonamide, giving moderate yields for C-2 sulfonamido derivatives. The action of acetic acid or ZnBr2/CH2Cl2 on 5-methyl-N2-tosyl-1-(2-deoxy-5-O-trityl-β-d-threo-pentofuranosyl)isocytosine led to the cleavage of both the protection group and the nucleoside bond, yielding 5-methyl-N2-tosylisocytosine as the major product. Structures of the prepared C-2 sulfonamido nucleosides were confirmed by the 1D and 2D NMR experiments, and X-ray structural analysis of 4-imino-N2-tosylamino-1-(β-d-arabinofuranosyl)pyrimidine. Both methods confirmed β-configuration and anti-conformation of the 2-sulfonamido nucleosides. The investigated compounds displayed moderate inhibition of tumor cell growth in vitro, as determined by the MTT assay using six different human tumor cell lines.  相似文献   

16.
Reaction of 4-isopropylamino-5-chloro-1,2-dithiole-3-ones 3 and S2Cl2 in acetonitrile gave selectively 3-oxo-bis[1,2]dithiolo[1,4]thiazine-5-thiones 1 by the addition of triethylamine and bis[1,2]dithiolo[1,4]thiazine-3,5-diones 5 under the action of formic acid. 3,5-Diones 5 were also obtained by intramolecular cyclization of N,N-bis(5-chloro-3-oxo[1,2]dithiol-4-yl)amines 6 with S2Cl2 in the presence of Et3N.  相似文献   

17.
Reaction of Na[AuCl4] with 2-vinylpyridine (vinpy) and 2-ethylpyridine (etpy) affords the N-bonded adducts Au(Rpy)Cl3 (R = CH2CH, vinpy; CH3CH2, etpy). Cationic adducts, [Au(vinpy)2Cl][X]2 (X = BF4, PF6) and [Au(etpy)2Cl2][BF4], were also obtained by reaction of Au(Rpy)Cl3 with Rpy (1:1) and excess NaBF4 or KPF6. Thermal activation of Au(vinpy)Cl3 in water gives the five-membered cycloaurated derivative [Au(k2-C,N-CH2CH(Cl)-C5H4N)Cl2] formally resulting through a trans nucleophilic addition of a chloride onto the CC bond. No cyclometallated derivatives are obtained by reactions of Au(etpy)Cl3. An X-ray crystal structure determination on the PPh3 derivative [Au(k2-C,N-CH2CH(Cl)-C5H4N)(PPh3)Cl][PF6] was carried out.  相似文献   

18.
The reactions of Cl3PN P(O)Cl2 ( 1 ) with primary and secondary amines have been studied. The following monophosphazenes, (RRN)3PN P(O)(NRR)2, and bis(phosphinoyl)amines, [(RRN)2P(O)]2NH were isolated: NRR = NHCH2Ph, Net2, NH(CH2)2CH3 groups for monophosphazenes, and Net2, NH(CH2)2CH3 for phosphinoyl amines. The unexpected geminal phosphazene, Cl(RRN)2PN P(O)Cl2, {RRN = N[CH(CH3)2]2}, was also obtained in moderate yield. The spectral data (IR, 1H, 13C, and 31P NMR, and MS) are presented. The structure of 1-(dichlorophosphinyl)-2-chloro-2,2-bis(diisopropylamino)phosphazene ( 5 ) was determined by X-ray crystallography. The basicities of these and related compounds in nonaqueous nitrobenzene solution were obtained by potentiometric titration.  相似文献   

19.
Tautomers of N-allyl- and N-propargyl-substituted trifluoromethanesulfonimides (CF3SO2)2NR (R = CH2CH=CH2, Z/E-CH=CHMe, CH2C≡CH, CH=CH=CH2, C≡CCH2) were calculated by the DFT (B3LYP, wB97XD, PBE1PBE), MP2, and CBS-QB3 methods. The results were compared with the theoretical data for the corresponding amines and amides NHRR1 (R1 = H, CF3SO2). It was shown that there is no conjugation between the nitrogen atom and C=C bond and that conjugation exists with the C≡C bond with electron density displacement toward the nitrogen atom. The calculations of anions derived from N-allyl- and N-propargyl-trifluoromethanesulfonimides revealed the possibility of their rearrangement with elimination of trifluoromethanesulfinate anion and formation of its H-complex with N-(prop-2-en-1-ylidene)trifluoromethanesulfonamide or N-(prop-2-yn-1-ylidene)trifluoromethanesulfonamide.  相似文献   

20.
Abstract

Reactions of non-gem-hexanedioxytetrachlorocyclotriphosphazene (1) with monofunctional nucleophilic reagents, 2-(2-hydroxyethyl)thiophene (2), benzyl alcohol (3) and 1,1,3,3-tetramethylguanidine (4) were investigated. The reactions, using an excess of NaH, in THF solutions, under refluxing conditions and with 1:2?mole ratios allow the synthesis of the following novel cyclotriphosphazene derivatives: 2,4-dichloro-2,4-(hexane-1,6-dioxy)-6,6-[2-(2-ethoxy)hiophene]-cyclotriphosphazatriene, N3P3Cl2[O(CH2)6O-(C6H8OS)2] (5); 2,4-(hexane-1,6-dioxy)-2,4,6,6-[2-(2-ethoxy) thiophene]-cyclotriphosphazatriene, N3P3[O(CH2)6O-(C6H8OS)4] (6); 2,4-dichloro-2,4-(hexane-1,6-dioxy)-6,6-(methoxybenzene)-cyclotriphosphazatriene, N3P3Cl2[O(CH2)6O-(C6H5CH2O)2] (7); 2,4-(hexane-1,6-dioxy)-2,4,6,6-(methoxybenzene)-cyclotriphosphazatriene, N3P3[O(CH2)6O-(C6H5CH2O)4] (8); and 2,4-dichloro-2,4-(hexane-1,6-dioxy)-6,6-(1,1,3,3-tetramethyguanidine)-cyclotriphosphazatriene, N3P3Cl2[O(CH2)6O-HN-CN2(CH3)4] (9). The structures of the synthesized compounds (5–9) have been characterized by elemental analysis, TLC-MS, 1H, 13C and 31P {+1H} and {?1H} NMR spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号