首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含能盐和含能离子液体   总被引:15,自引:0,他引:15  
近年来含能盐和含能离子液体由于其独特的性质而受到广泛关注。本文综述了多种含能盐和含能离子液体(阳离子包括三唑、四唑、双环唑、六次甲基四胺等;阴离子包括硝酸根、高氯酸根、硝基唑、叠氮根、四硝基铝、多腈基化合物、二硝基尿素等)的合成;结合其表征结果分析了阳离子上的取代基以及阴阳离子对它们的性能如熔点、生成焓、密度等的影响。对含能盐和含能离子液体在炸药和推进剂方面的应用进行了展望。  相似文献   

2.
Novel peralkylated imidazolium ionic liquids bearing alkoxy and/or alkenyl side chains have been synthesized and studied. Different synthetic routes towards the imidazoles and the ionic liquids comprising bromide, iodide, methanesulfonate, bis(trifluoromethylsulfonyl)imide ([NTf2]?), and dicyanamide {[N(CN)2]?} as the anion were evaluated, and this led to a library of analogues, for which the melting points, viscosities, and electrochemical windows were determined. Incorporation of alkenyl moieties hindered solidification, except for cations with high symmetry. The alkoxy‐derivatized ionic liquids are often crystalline; however, room‐temperature ionic liquids (RTILs) were obtained with the weakly coordinating anions [NTf2]? and [N(CN)2]?. For the viscosities of the peralkylated RTILs, an opposite trend was found, that is, the alkoxy derivatives are less viscous than their alkenyl‐substituted analogues. Of the crystalline compounds, X‐ray diffraction data were recorded and related to their molecular properties. Upon alkoxy substitution, the electrochemical cathodic limit potential was found to be more positive, whereas the complete electrochemical window of the alkenyl‐substituted imidazolium salts was shifted to somewhat more positive potentials.  相似文献   

3.
Abstract

Novel chiral imidazolium and pyridinium ionic liquids based on tartaric acid and 2-oxazolidinone were designed. Symmetrical dicationic ionic liquids based on tartaric acid have been synthesized and characterized. These chiral ionic liquids were designed by employing very short and simple methods. Incorporation of alkyl halide over tartaric acid and 2-oxazolidinone is an important step. N-methyl imidazole and pyridine were used for preparation of quaternary salts. These ionic liquids have been evaluated for the asymmetric sulfide oxidation. Chiral ionic liquids based on tartaric acid showed superior chiral inducing property as compare to 2-oxazolidinone based chiral ionic liquids.  相似文献   

4.
New 1-alkoxy-3-alkyl-4,5-dimethylimidazolium bromides were synthesized by alkylation of the corresponding 1-alkylimidazole 3-oxides, which were conveniently prepared via condensation of α-(hydroxyimino)ketones, primary aliphatic amines, and formaldehyde. By using enantiomerically pure chiral amines, optically active imidazolium salts were obtained. Treatment with sodium tetrafluoroborate in acetone yielded the corresponding imidazolium tetrafluoroborates. All these compounds, with only one exception, were obtained as oils, which are considered as potential ionic liquids and ‘chiral ionic liquids’. The reduction of the chiral or non-chiral 1-alkylimidazole 3-oxides with Raney-Ni, followed by alkylation with alkyl bromides and subsequent ion exchange to tetrafluoroborates, gave the corresponding 1,3-dialkylimidazolium salts, most of them showing properties of ionic liquids. The alkylation of 1-butyl-4,5-dimethylimidazole 3-oxide and the corresponding imidazole, respectively, with 1,3-dibromopropane led to the first bis-imidazolium dibromides and bis-tetrafluoroborates.  相似文献   

5.
Mahesh L. Patil 《Tetrahedron》2007,63(51):12702-12711
A library of 13 novel chiral spiro imidazolium salts has been synthesized. The effects of N-substituents and counteranions on the melting point of spiro bis(imidazolium) salts are studied in efforts toward the development of room temperature chiral ionic liquids.  相似文献   

6.
Bukuo Ni 《Tetrahedron letters》2006,47(41):7331-7334
Nine chiral room temperature ionic liquids (RTILs), which contain a chiral moiety and a urea functionality bonded to a imidazolium ring, have been designed and synthesized. The synthesis of these ionic liquids is concise and practical due to the commercial availability of the starting materials. These novel RTILs were readily prepared from 1-(3-aminopropyl)imidazole and amino acid ester derived isocyanates. We envision that these new chiral RTILs can serve as effective reaction media as well as chiral catalysts, which are presently being investigated in our laboratory.  相似文献   

7.
New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5‐cyanotetrazolide anion [C2N5]? are reported. Depending on the nature of cation–anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230 °C, an electrochemical window of 4.5 V, a viscosity of 25 mPa s at 20 °C, and an ionic conductivity of 5.4 mS cm?1 at 20 °C for the IL 1‐butyl‐1‐methylpyrrolidinium 5‐cyanotetrazolide [BMPyr][C2N5]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium‐ion batteries.  相似文献   

8.
It has been observed by us earlier that imidazolium ionic liquids ([bmim][BF4] react with paraformaldehyde giving in nearly quantitative yield imidazolium ionic liquids substituted at 2‐position with hydroxymethyl group ([bhmim][BF4]). In this article, we describe the application of those ionic liquids (after converting hydroxyl group into alkoxide anion by reaction with sodium hydride) as initiators for anionic polymerization of ethylene oxide (EO). Up to DPn ~ 30 polymerization proceeds without side reactions, and the product is exclusively low‐molecular‐weight polyoxyethylene containing imidazolium head group (POE‐IL) with DPn equal to [EO]/[bhmim] ratio. By increasing [EO]/[bhmim] ratio further, side reaction start to interfere, and macromolecules that does not contain imidazolium head groups are also formed, as evidenced by analysis of MALDI TOF spectra. Blending of POE‐IL with high‐molecular‐weight POE leads to significant reduction of crystallinity of POE. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6961–6968, 2008  相似文献   

9.
In this work, the geometrical and electronic properties of the mono cationic ionic liquid 1‐hexyl‐3‐methylimidazolium halides ([C6(mim)]+_X?, X=Cl, Br and I) and dicationic ionic liquid 1,3‐bis[3‐methylimidazolium‐1‐yl]hexane halides ([C6(mim)2X2], X=Cl, Br and I) were studied using the density functional theory (DFT). The most stable conformer of these two types ionic liquids (IL) are determined and compared with each other. Results show that in the most stable conformers, in both monocationic ILs and dicationic ILs, the Cl? and Br? anions prefer to locate almost in the plane of the imidazolium ring whereas the I? anion prefers nearly vertical location respect to the imidazolium ring plan. Comparison of hydrogen bonding and ionic interactions in these two types of ionic liquids reveals that these ionic liquids can be formed hydrogen bond by Cl? and Br? anion. The calculated thermodynamic functions show that the interaction of cation — anion pair in the dicationic ionic liquids are more than monocationic ionic liquids and these interactions decrease with increasing the halide anion atomic weight.  相似文献   

10.
The nature of the interactions between 1,3-dialkylimidazolium cations and noncoordinating anions such as tetrafluoroborate, hexafluorophosphate, and tetraphenylborate has been studied in the solid state by X-ray diffraction analysis and in solution by (1)H NMR spectroscopy, conductivity, and microcalorimetry. In the solid state, these compounds show an extended network of hydrogen-bonded cations and anions in which one cation is surrounded by at least three anions and one anion is surrounded by at least three imidazolium cations. In the pure form, imidazolium salts are better described as polymeric supramolecules of the type {[(DAI)(3)(X)](2+)[(DAI)(X)(3)](2-)}(n) (where DAI is the dialkylimidazolium cation and X is the anion) formed through hydrogen bonds of the imidazolium cation with the anion. In solution, this supramolecular structural organization is maintained to a great extent, at least in solvents of low dielectric constant, indicating that mixtures of imidazolium ionic liquids with other molecules can be considered as nanostructured materials. This model is very useful for the rationalization of the majority of the unusual behavior of the ionic liquids.  相似文献   

11.
New tetrachlorocobaltate (II) and tetrachloromanganate (II) ionic compounds containing various counterdications were synthesized and characterized. These salts are soluble in polar solvents such as methanol and water. Physical properties such as thermal stability, melting point, and magnetic susceptibility of these salts depend on the cation or anion structure. The thermal stability of the phosphinium or imidazolium based salts is higher than that of the pyridinium or triethylaminonium analogues. The melting point of these compounds is following the order of triphenylphosphinium > pyridinium > imidazolium dications, and symmetrical dicationic salts > unsymmetrical ones. The magnetic susceptibility (χMT values) of tetrachloromanganate (II) anions-based salts is higher than that of tetrachlorocobaltate (II) anions-based salts. These dicationic salts exhibit weak antiferromagnetic interactions and have higher magnetic susceptibility than that of the previously reported tetrachloromanganate (II) and tetrachlorocobaltate(II) salts with monocationic counterion.  相似文献   

12.
Seven tripodal imidazolium salts were synthesized and used as catalyst precursors in cross-coupling reactions of aryl halides with arylboronic acids. Effect of counterions and central cores of seven tripodal imidazolium salts was investigated. The tripodal imidazolium salt anchored to benzene with anion PF6 was found most effective with Pd(OAc)2 for the cross-coupling of aryl bromides with arylboronic acids.  相似文献   

13.
The reaction of 1‐methylimidazole and α,α‐dibromo‐p‐xylene was followed by a metathesis reaction with fluorinated anion sources, which yielded new fluorinated imidazolium salts [C6H4(CH2(C4H6N2)2]2+ 2[A] where A = BF4 ( 2 ), PF6 ( 3 ), CF3SO3 ( 4 ), and CF3COO ( 5 ). The compounds were characterized by 1H‐, 13C‐, 19F‐, 31P NMR, and IR spectroscopy. Single crystal X‐ray diffraction data of compounds 2 , 3 , and 4 were also reported, whereas compound 5 was found to be a liquid. The solid compounds crystallized in the monoclinic P21/c space group and have similar crystallographic parameters. The study revealed that the different fluorinated anions affected the spatial arrangement of atoms and the extent of cation–anion interactions, hence, influenced the stability and coordination properties of the imidazolium salts. A trend was observed which related the strength of cation–anion interaction to physical properties such as melting point.  相似文献   

14.
[reaction: see text] Novel chiral imidazolium salts have been synthesized as examples of chiral ionic liquids with a spiro skeleton. Effects of N-substituents and counteranions on the melting point of spiro imidazolium salts and their chiral discrimination abilities are described.  相似文献   

15.
An exhaustive experimental study based on X‐ray diffraction analysis, NMR, FTIR‐ATR (attenuated total reflection), and Raman spectroscopy as well as theoretical calculations is reported in order to understand how the non‐covalent intermolecular contacts are fundamental to explain structure–property relationships and allowing us to correlate a basic macroscopic property (i.e., the melting point, Tm) with the structural variables of a family of enantiopure 1,4‐dialkyl‐1,2,4‐triazolium salts. The effect of different structural vectors such as the ring size, the spatial disposition of the substituent, the substitution on the oxygen atom, the nature of the anion, or the N4 alkylation of the triazole on the intermolecular interactions of these chiral salts of a well‐defined 3D structure is reported. The non‐covalent intermolecular contacts mainly implicating the triazolium H3 proton are fundamental to explain structure–property relationships and, therefore, the physical properties of these new chiral salts, rather than simple anion–cation interactions. Overall, our findings highlight the importance of the specific supramolecular interactions for the understanding of the physical properties of triazolium salts and ionic liquids.  相似文献   

16.
Yields of H2 produced by electron beam irradiation were investigated in a series of room-temperature ionic liquids comprising 1-hexyl-3-methylimidazolium, 1-hexyl-4-(dimethylamino)pyridinium, 1-butyl-1-methylpyrrolidinium, triethylammonium or trioctyl(tetradecyl)phosphonium cations associated with bis(trifluoromethylsulfonyl)imide anion. The G(H2) values ranged from 2.6×10−8 mol/J for the imidazolium and pyridinium-based ionic liquids to 2.5×10−7 mol/J for the phosphonium liquid. These results correlate well with yields of gaseous hydrogen in studies of nonionic aliphatic and aromatic organic compounds.  相似文献   

17.
Screening of ionic liquids for extraction of flavonoids from heather   总被引:1,自引:0,他引:1  
Room temperature ionic liquids are novel solvents with the specific properties that makes them of interest for application for extraction for a wide range of compounds. In this work extraction efficiency of flavonoids from heather flowers using ionic liquids based on imidazolium cation were evaluated and compared with organic solvents. It was found that the anion of ionic liquid significantly influence the extraction yields. Flavonoid content as well as antioxidant activity based on radical scavenging on 1,1-diphenul-2-pirylhydrazyl radicals and cupric reducing antioxidant capacity increased in the order: [Bmim]PF6 < [Bmim]BF4 < [Bmim]Cl. The obtained extraction yield using [Bmim]Cl were higher than reported for 60% ethanol and ethyl acetate under similar conditions, thus, may be helpful for better utilization of heather flowers as the potential pharmaceutical and nutraceutical ingredients.  相似文献   

18.
The synthesis, structure, and physical properties of ionic liquids (IL) bearing the novel [Al(O–C6H4–CN)4] ion as counterion to the commonly used [NR4]+, [PR4]+ and imidazolium ions are reported. Both the influence of the alkyl chain length as well as the functionalization with cyano groups is studied. These ILs are easily obtained by reaction of Ag[Al(O–C6H4–CN)4] with the corresponding ammonium, phosphonium, and imidazolium halides. The stability towards electrophilic cations was investigated. All prepared salts have a window for the liquid phase of ca. 200 °C and are thermally stable up to 450 °C. The solid‐state structures reveal only weak cation ··· anion and anion ··· anion interactions in accord with the observed low melting points (glass transition points).  相似文献   

19.
In the past few years, ionic liquid-based aqueous biphasic systems have become the subject of considerable interest as a promising technique for the extraction and purification of several macro/biomolecules. Aiming at developing guidelines for more benign and efficient extraction processes, phase diagrams for aqueous biphasic systems composed of ionic liquids and inorganic/organic salts are here reported. Several combinations of ionic liquid families (imidazolium, pyridinium, phosphonium, quaternary ammonium and cholinium) and salts [potassium phosphate buffer (KH2PO4/K2HPO4 at pH 7), potassium citrate buffer (C6H5K3O7/C6H8O7 at pH 5, 6, 7 and 8) and potassium carbonate (K2CO3 at pH ∼13)] were evaluated to highlight the influence of the ionic liquid structure (cation core, anion and alkyl chain length), the pH and the salt nature on the formation of aqueous biphasic systems. The binodal curves and respective tie-lines reported for these systems were experimentally determined at (298 ± 1) K. In general, the ability to promote the aqueous biphasic systems formation increases with the pH and alkyl chain length. While the influence of the cation core and anion nature of the ionic liquids on their ability to form aqueous biphasic systems closely correlates with ionic liquids capacity to be hydrated by water, the effect of the different salts depends of the ionic liquid nature and salt valency.  相似文献   

20.
Two vanadyl salen complexes having peripheral styryl substituents have been reacted with 1-methyl-3-(3-mercaptopropyl)-imidazolium chloride using azoisobutyronitrile as radical initiator. The resulting compounds contain at the same time a vanadyl salen complex and one imidazolium cation. In agreement with the expectations in view of their structure, these compounds were insoluble in conventional organic solvents, but completely miscible in imidazolium ionic liquids. These vanadyl salen complexes bonded to an imidazolium cation are highly active and reusable catalysts for the cyanosilylation of aldehydes. Moderate enantiomeric excesses were obtained using the chiral version of this complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号