首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the structural changes with temperature and composition in the Sc2Si2O7-Y2Si2O7 system; members of this system are expected to form in the intergranular region of Si3N4 and SiC structural ceramics when sintered with the aid of Y2O3 and Sc2O3 mixtures. A set of different compositions have been synthesized using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1750 °C during different times. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β-RE2Si2O7 polymorph, with γ-RE2Si2O7 and δ-RE2Si2O7 showing very reduced stability fields. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of the components. Although, the XRD data show a complete solid solubility of β-Sc2Si2O7 in β-Y2Si2O7 at 1300 °C, the 29Si MAS-NMR spectra indicate a local structural change at x ca. 1.15 (Sc2−xYxSi2O7) related to the configuration of the Si tetrahedron, which does not affect the long-range order of the β-RE2Si2O7 structure. Finally, it is interesting to note that, although Sc2Si2O7 shows a unique stable polymorph (β), Sc3+ is able to replace Y3+ in γ-Y2Si2O7 in the compositional range 1.86?x?2 (where x is Sc2−xYxSi2O7) as well as in δ-Y2Si2O7 for compositions much closer to the pure Y2Si2O7.  相似文献   

2.
Preparation of new solid solutions containing divalent europium have been tried in the systems Eu2Nb2O7Sr2Nb2O7 and Eu2Ta2O7Sr2Ta2O7. These solid solutions described as Eu2xSr2(1?x)M2O7 (M = Nb and Ta) exist in a pure orthorhombic phase in a limited region of x from 0 to about 0.5. The compounds with compositions close to Eu2M2O7 exist but techniques have not been found to prepare them in pure form.  相似文献   

3.
Two original compounds, Ln4?2xBa2+2xZn2?xO10?2x, were isolated for Ln = La, Nd and 0 ≤ x ≤ 0.25. These oxides are tetragonal with a and c parameters close to 6.91 and 11.59 Å, respectively, for lanthanum, and 6.75 and 11.54 Å for neodymium. The structure of these phases was determined from X-ray powder patterns in the most symmetric space group, I4mcm, using Patterson and Fourier functions for x = 0. The structure should be compared to that of copper oxides La4?2xBa2+2xCu2?xO10?2x: it is built up of identical Ln2O5 layers formed from face- and edge-sharing LnO8 polyhedra, between which Ba2+ and Zn2+ ions are inserted. Contrary to the copper compounds, two successive Ln2O5 layers are rotated by 90°, involving a doubling of c. The result for Zn2+ is tetrahedral coordination, while the coordination of Ba2+ becomes a bicapped antiprism.  相似文献   

4.
The rare-earth dicarboxylate hybrid materials [Ce(H2O)]2[O2C(CH2)2CO2]3 ([Ce(Suc)]) and [Sm(H2O)]2[O2C(CH2)2CO2]3·H2O ([Sm(Suc)]) have been hydrothermally synthesized (200°C, 3 days) under autogenus pressure. [Ce(Suc)] is triclinic, a=7.961 (3) Å, b=8.176 (5) Å, c=14.32 (2) Å, α=97.07° (7), β=96.75° (8), γ=103.73° (6), and z=2. The crystal structure of this compound has been determined using 3120 unique single crystal data. The final refinements let the agreement factors R1 and wR2(F2) converge to 0.0138 and 0.0363, respectively. [Ce(Suc)] is built up from infinite chains of edge-sharing nine-fold coordinated cerium atoms running along [100]. These chains are interconnected by the carbon atoms of the succinate anions, leading to a three-dimensional hybrid framework. The cell constants of [Sm(Suc)], isotypic with monoclinic C2/c [Pr(H2O)]2[O2C(CH2)2CO2]3·H2O ([Pr(Suc)]), were refined starting from X-ray powder data: a=20.275 (3) Å, b=7.919 (6) Å, c=14.130 (3) Å, and β=121.45° (1). Despite its lower symmetry, [Ce(Suc)] presents an important structural filiation with [Sm(Suc)]  相似文献   

5.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

6.
Two new compounds were synthesized by heating mixtures of the elements at 975-1025 K and characterized by single-crystal X-ray methods. CaZn2Si2 (a=4.173(2) Å, c=10.576(5) Å) and EuZn2Ge2 (a=4.348(2) Å, c=10.589(9) Å) crystallize in the ThCr2Si2-type structure (space group I4/mmm; Z=2). Magnetic susceptibility measurements of EuZn2Ge2 show Curie-Weiss behavior with a magnetic moment of 7.85(5)μB/Eu and a paramagnetic Curie temperature of 10(1) K. EuZn2Ge2 orders antiferromagnetically at TN=10.0(5) K and undergoes a metamagnetic transition at a low critical field of about 0.3(2) T. The saturation magnetization at 2 K and 5.5 T is 6.60(5) μB/Eu. 151Eu Mössbauer spectroscopic experiments show one signal at 78 K at an isomer shift of −11.4(1) mm/s and a line width of 2.7(1) mm/s compatible with divalent europium. At 4.2 K full magnetic hyperfine field splitting with a field of 26.4(4) T is detected. The already known compounds CaM2Ge2 (M: Mn-Zn) also crystallize in the ThCr2Si2-type structure. Their MGe4 tetrahedra are strongly distorted with M=Ni and nearly undistorted with M=Mn or Zn. According to LMTO electronic band structure calculations, the distortion is driven by a charge transfer from M-Ge antibonding to bonding levels.  相似文献   

7.
The crystal structure of our newly discovered Sr-Co-O phase is investigated in detail through high-resolution electron microscopy (HREM) techniques. Electron diffraction (ED) measurement together with energy dispersive X-ray spectroscopy (EDS) analysis show that an ampoule-synthesized sample contains an unknown Sr-Co-O ternary phase with monoclinic symmetry and the cation ratio of Sr/Co=1. From HREM images a layered structure with a regular stacking of a CdI2-type CoO2 sheet and a rock-salt-type Sr2O2 double-layered block is observed, which confirms that the phase is the parent of the more complex “misfit-layered (ML)” cobalt oxides of [MmA2Om+2]qCoO2 with the formula of [Sr2O2]qCoO2, i.e. m=0. It is revealed that the misfit parameter q is 0.5, i.e. the two sublattices of the CoO2 sheet and the Sr2O2 block coexist to form a commensurate composite structure. We propose a structural model with monoclinic P21/m symmetry, which is supported by simulations of ED patterns and HREM images based on dynamical diffraction theory.  相似文献   

8.
Samples in the system Lu2−xYxSi2O7 (0?x?2) have been synthesized following the sol-gel method and calcined to 1300 °C, a temperature at which the β-polymorph is known to be the stable phase for the end-members Lu2Si2O7 and Y2Si2O7. The XRD patterns of all the compositions studied are compatible with the structure of the β-polymorph. Unit cell parameters are calculated as a function of composition from XRD patterns. They show a linear change with increasing Y content, which indicates a solid solubility of β-Y2Si2O7 in β-Lu2Si2O7 at 1300 °C. 29Si MAS NMR spectra of the different members of the system agree with the XRD results, showing a linear decrease of the 29Si chemical shift with increasing Y content. Finally, a correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu2Si2O7-Y2Si2O7 and the results compare favorably with the values obtained experimentally.  相似文献   

9.
The polyphosphide Au2PbP2 was prepared by reaction of the elemental components using liquid lead as a reaction medium. Well-developed crystals were obtained after dissolving the matrix in hydrochloric acid. Their crystal structure was determined from four-circle X-ray diffractometer data: Cmcm, a=323.6(1) pm, b=1137.1(2) pm, c=1121.8(1) pm, Z=4, R=0.023 for 478 structure factors and 20 variable parameters. The structure contains zigzag chains of phosphorus atoms with a typical single-bond distance of 219.4(2) pm. The two different kinds of gold atoms are both in linear phosphorus coordination with typical single-bond distances of 232.6(2) and 234.2(2) pm, and the lead atoms have only metal neighbors (7 Au and 2 Pb). Accordingly, chemical bonding of the compound may be expressed by the formula (Au+1)2Pb±0(P−1)2. The corresponding thallium and mercury polyphosphides Au2TlP2 (a=324.1(1) pm, b=1136.1(1) pm, c=1122.1(1) pm) and Au2HgP2 (a=322.1(1) pm, b=1131.4(2) pm, c=1122.6(1) pm) were found to be almost isotypic with Au2PbP2. Their crystal structures were refined from single-crystal X-ray data to R=0.036 (682 F values, 25 variables) and R=0.026 (539 F values, 35 variables), respectively. The structure of these compounds may also be described as consisting of a three-dimensional network of condensed 8- and 10-membered Au2P6 and Au4P6 rings forming parallel channels, which are filled by the lead, thallium, and mercury atoms. The lead atoms are well localized in these channels, while the thallium and even more the mercury atoms occupy additional positions within these channels. Freshly prepared samples of Au2HgP2 show reproducibly slightly different axial ratios and larger cell volumes (ΔV=0.5%) than those after exposure of the samples to air for several days.  相似文献   

10.
The ternary intermetallic compounds RE2Cu2Cd (RE=Y, Sm, Gd-Tm, Lu) were synthesized by induction-melting of the elements in sealed tantalum tubes. The samples were characterized by X-ray powder diffraction. The structure of Gd2Cu2Cd was refined from single crystal X-ray diffractometer data: Mo2FeB2 type, space group P4/mbm, a=756.2(3), c=380.2(3) pm, wR2=0.0455, 321 F2 values, 12 variables. The structures are 1:1 intergrowth variants of slightly distorted CsCl and AlB2 related slabs of compositions RECd and RECu2. The copper and cadmium atoms build up two-dimensional [Cu2Cd] networks (257 pm Cu-Cu and 301 pm Cu-Cd in Gd2Cu2Cd) which are bonded to the rare earth atoms via short RE-Cu contacts (290 pm in Gd2Cu2Cd). Temperature dependent susceptibility measurements of RE2Cu2Cd with RE=Gd, Tb, Dy, and Tm show experimental magnetic moments which are close to the free RE3+ ion values. The four compounds show ferromagnetic ordering at TC=116.7(2), 86.2(3), 48.4(1), and 14.5(1) K, respectively, as confirmed by heat capacity measurements. Dy2Cu2Cd shows a spin reorientation at TN=16.9(1) K.  相似文献   

11.
Sr2TiSi2O8 single crystals were grown by Czochralski pulling and from a high-temperature solution. X-ray diffractometry revealed the modulated crystal structure of Sr2TiSi2O8 to belong to the 5D superspace group P4bm (−α, α, 1/2; α, α, 1/2) with α=0.3. Atomic positions, anisotropic displacement factors and positional modulation parameters for Sr2TiSi2O8 are determined and discussed. The positional modulation is further investigated by electron diffraction and high-resolution transmission electron microscopy. In the latter experiments, the 2D modulation appears to be superimposed by some 1D modulation waves. This effect is discussed in terms of growth conditions.  相似文献   

12.
Raman spectra of poly crystalline and single crystal K2C2O4. H2O and K2C2O4. D2O have been recorded at room temperature. From an earlier neutron diffraction study it is known that the space group is C62h. The water molecule occupies a C2 site and the oxalate ion a C1 site. The assigned water vibrations show small factor group splitting between g modes (Raman active) and u modes (IR active). The internal oxalate vibrations are found to have wavenumbers in good agreement with those reported from Raman studies of other oxalates.  相似文献   

13.
Two-ordered perovskites, Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75, have been stabilized and characterized by transmission electron microscopy, Mössbauer spectroscopy and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with ab≈2ap and c≈3ap (S.G.: Pb2n or Pbmn) for the Sr-based compound and one with ab≈2ap and c≈8ap (S.G.: B222, Bmm2, B2mm or Bmmm) for the Ca-based one. The high-resolution transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeOx] layer, suggesting that Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75 behave differently compared to their Ln-based homolog. The HAADF-STEM images allow to propose a model of cation ordering on the A sites of the perovskite. The Mössbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compounds exhibit a high value of resistivity and the inverse molar susceptibility versus temperature curves evidence a magnetic transition at about 730 K for the Bi1/3Sr2/3FeO2.67 and a smooth reversible transition between 590 and 650 K for Bi1/2Ca1/2FeO2.75.  相似文献   

14.
Two novel three-dimensional five-connected coordination polymers [M2(C3H2O4)2(H2O)2(μ2-hmt)]n with 4466 topologies (M=Zn, Cu; hmt=hexamethylenetetramine) were synthesized and characterized by elemental analysis, crystal structure, IR, thermal gravimetric analyses. Both [Zn2(C3H2O4)2(H2O)2(μ2-hmt)]n and [Cu2(C3H2O4)2(H2O)2(μ2-hmt)]n all crystallize in the orthorhombic system, space group Imm2, and with Z=2. Metal ions have all octahedral geometry coordinated by four oxygen atoms from three malonates, one oxygen atom from a water molecule and one nitrogen atom of hmt ligand. Each malonate binds a metal ion with its two oxygen atoms in a chelating mode and connects to adjacent two metal ions with another two oxygen atoms to form an infinite wavy layer. The layers are bridged by μ2-hmt molecules to form a three-dimensional framework with channels. The magnetic susceptibility data show there is a weak antiferromagnetic exchange interaction in the complex [Cu2(C3H2O4)2(H2O)2(μ2-hmt)]n.  相似文献   

15.
Natural radiative lifetimes have been measured of the 3d 10 ns 2 S 1/2 (n=6?10) and of the 3d 10 nd 2 D 3/2, 5/2 (n=5?9) sequences by using two step excitation of copper atoms in an atomic beam. The states investigated were populated by the light from two pulsed dye lasers pumped by the same Nd:YAG laser. The lifetimes of the2 D sequence increase regularly with increasing principal quantum number. This is not the case for the2 S series, because of configuration interaction in the2 P series. In addition the lifetime of the 3d 105p 2 P 3/2 state has been measured together with its branching ratio.  相似文献   

16.
Sc2O2S is hexagonal, P63mmc, a = 3.5196(4) Å, c = 12.519(2) Å, Z = 2, Dc = 3.807 g cm?3, Dm = 4.014 g cm?3, μ(Mo) = 55.51 cm?1. The final R value is 0.038 for 205 symmetry-independent reflections. This scandium oxysulfide has c = 12.52 Å, twice the value found in rare earth oxysulfides. An La2O2S cell combined with its reflection in a (001) mirror gives the Sc2O2S cell.  相似文献   

17.
Single crystals of the novel ternary compounds EuZn2Si2 and EuZn2Ge2 were grown from pure gallium, indium, or zinc metal used as a flux solvent. Crystal properties were characterized using X-ray single-crystal analyses via Gandolfi and Weissenberg film techniques and by four-circle X-ray single-crystal diffractometry. The new compounds crystallize with ternary derivative structures of BaAl4, i.e., EuZn2Si2 with ThCr2Si2-type (a=0.42607(2) nm, c=1.03956(5) nm, I4/mmm, R1=0.038) and EuZn2Ge2 with CaBe2Ge2-type (a=0.43095(2) nm, c=1.07926(6) nm, P4/nmm, R1=0.067). XAS and magnetic measurements on EuZn2Si2 and EuZn2Ge2 revealed in both compounds the presence of Eu2+ ions carrying large magnetic moments, which order magnetically at low temperatures. The magnetic phase transition occurs at TN=16 and 7.5 K for the silicide and the germanide, respectively. In EuZn2Si2 there occurs a spin reorientation at 13 K and furthermore some canting of antiferromagnetically ordered moments below about 10 K. In EuZn2Ge2 a canted antiferromagnetic structure is formed just at TN.  相似文献   

18.
Using biprotonated dabco (1,4-diazabicyclo[2.2.2]octane) or pipz (piperazine) as counter cations, mixed-ligand fluoromanganates(III) with dimeric anions could be prepared from hydrofluoric acid solutions. The crystal structures were determined by X-ray diffraction on single crystals: dabcoH2[Mn2F8(H2O)2]·2H2O (1), space group P21, Z = 2, a = 6.944(1), b = 14.689(3), c = 7.307(1) Å, β = 93.75(3)°, R1 = 0.0240; pipzH2[Mn2F8(H2O)2]·2H2O (2), space group , Z = 2, a = 6.977(1), b = 8.760(2), c = 12.584(3) Å, α = 83.79(3), β = 74.25(3), γ = 71.20(3)°, R1 = 0.0451; (dabcoH2)2[Mn2F8(H2PO4)2] (3), space group P21/n, Z = 4, a = 9.3447(4), b = 12.5208(4), c = 9.7591(6) Å, β = 94.392(8)°, R1 = 0.0280. All three compounds show dimeric anions formed by [MnF5O] octahedra (O from oxo ligands) sharing a common edge, with strongly asymmetric double fluorine bridges. In contrast to analogous dimeric anions of Al or Fe(III), the oxo ligands (H2O (1,2) or phosphate (3)) are in equatorial trans-positions within the bridging plane. The strong pseudo-Jahn-Teller effect of octahedral Mn(III) complexes is documented in a huge elongation of an octahedral axis, namely that including the long bridging Mn-F bond and the Mn-O bond. In spite of different charge of the anion in the fluoride phosphate, the octahedral geometry is almost the same as in the aqua-fluoro compounds. The strong distortion is reflected also in the ligand field spectra.  相似文献   

19.
A dinuclear copper(Ⅱ) complex[Cu2(TATP)2(L-Leu)2(CIO4)2]2·2H2Owas synthesized and characterized, where, TATP=1,4,8,9-tetraazatriphenylene, and L-Leu=L-leucinate. The complex was crystallized in the triclinic space group P1, with two independent molecules in a unit cell. Two Cu(Ⅱ) ions in each complex [Cu2(TATP)2(L-Leu)2(CIO4)2] molecule were found to be in different coordination geometries, i.e., Cu2 or Cu4 of a distorted square-pyramidal geometry coordinated with two nitrogens of TATP, the amino nitrogen and one carboxylate oxygen of L-Leu and one oxygen of perchlorate, and Cul or Cu3 with an octahedral geometry coordinated with the above stated similar coordinated atoms, and another carboxylate oxygen of L-Leu coordinating to Cu2 or Cu4. The complex can interact with CT-DNA by an intercalative mode and cleave pBR322 DNA in the presence of ascorbate.  相似文献   

20.
The crystal structures of the two new synthetic compounds Co2TeO3Cl2 and Co2TeO3Br2 are described together with their magnetic properties. Co2TeO3Cl2 crystallize in the monoclinic space group P21/m with unit cell parameters a=5.0472(6) Å, b=6.6325(9) Å, c=8.3452(10) Å, β=105.43(1)°, Z=2. Co2TeO3Br2 crystallize in the orthorhombic space group Pccn with unit cell parameters a=10.5180(7) Å, b=15.8629(9) Å, c=7.7732(5) Å, Z=8. The crystal structures were solved from single crystal data, R=0.0328 and 0.0412, respectively. Both compounds are layered with only weak interactions in between the layers. The compound Co2TeO3Cl2 has [CoO4Cl2] and [CoO3Cl3] octahedra while Co2TeO3Br2 has [CoO2Br2] tetrahedra and [CoO4Br2] octahedra. The Te(IV) atoms are tetrahedrally [TeO3E] coordinated in both compounds taking the 5s2 lone electron pair E into account. The magnetic properties of the compounds are characterized predominantly by long-range antiferromagnetic ordering below 30 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号