首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, we obtain strong approximation theorems for a single server queue withr priority classes of customers and a head-of-the-line-first discipline. By using priority queues of preemptive-resume discipline as modified systems, we prove strong approximation theorems for the number of customers of each priority in the system at timet, the number of customers of each priority that have departed in the interval [0,t], the work load in service time of each priority class facing the server at timet, and the accumulated time in [0,t] during which there are neither customers of a given priority class nor customers of priority higher than that in the system.Research supported by the National Natural Science Foundation of China.  相似文献   

2.
This paper considers a discrete-time priority queueing model with one server and two types (classes) of customers. Class-1 customers have absolute (service) priority over class-2 customers. New customer batches enter the system at the rate of one batch per slot, according to a general independent arrival process, i.e., the batch sizes (total numbers of arrivals) during consecutive time slots are i.i.d. random variables with arbitrary distribution. All customers entering the system during the same time slot (i.e., belonging to the same arrival batch) are of the same type, but customer types may change from slot to slot, i.e., from batch to batch. Specifically, the types of consecutive customer batches are correlated in a Markovian way, i.e., the probability that any batch of customers has type 1 or 2, respectively, depends on the type of the previous customer batch that has entered the system. Such an arrival model allows to vary not only the relative loads of both customer types in the arrival stream, but also the amount of correlation between the types of consecutive arrival batches. The results reveal that the amount of delay differentiation between the two customer classes that can be achieved by the priority mechanism strongly depends on the amount of such interclass correlation (or, class clustering) in the arrival stream. We believe that this phenomenon has been largely overlooked in the priority-scheduling literature.  相似文献   

3.
In the article the queueing system of GI/G/1 type with batch arrival of customers and a single exponentially distributed vacation period at the end of every busy period is considered. Basic characteristics of transient state of the system are investigated: the first busy period, the first vacation period and the number of customers served during the first busy period. New results for the Laplace transform of the joint distribution of these three variables are obtained in dependence on the initial conditions of the system. This material is based upon work supported by the Polish Ministry of Scientific Research and Information Technology under Grant No. 3 T11C 014 26.  相似文献   

4.
In this paper we consider the problem of scheduling n jobs on a single batch processing machine in which jobs are ordered by two customers. Jobs belonging to different customers are processed based on their individual criteria. The considered criteria are minimizing makespan and maximum lateness. A batching machine is able to process up to b jobs simultaneously. The processing time of each batch is equal to the longest processing time of jobs in the batch. This kind of batch processing is called parallel batch processing. Optimal methods for three cases are developed: unbounded batch capacity, b > n, with compatible job groups and bounded batch capacity, b  n, with compatible and non compatible job groups. Each job group represents a different class of customers and the concept of being compatible means that jobs which are ordered by different customers are allowed to be processed in a same batch. We propose an optimal method for the problem with incompatible groups and unbounded batches. About the case when groups are incompatible and bounded batches, our proposed method is considered as optimal when the group with maximum lateness objective has identical processing times. We regard this method, however, as a heuristic when these processing times are different. When groups are compatible and batches are bounded we consider another problem by assuming the same processing times for the group which has the maximum lateness objective and propose an optimal method for this problem.  相似文献   

5.
We consider an M [X]/G/1 retrial queue subject to breakdowns where the retrial time is exponential and independent of the number of customers applying for service. If a coming batch of customers finds the server idle, one of the arriving customers begins his service immediately and the rest joins a retrial group (called orbit) to repeat his request later; otherwise, if the server is busy or down, all customers of the coming batch enter the orbit. It is assumed that the server has a constant failure rate and arbitrary repair time distribution. We study the ergodicity of the embedded Markov chain, its stationary distribution and the joint distribution of the server state and the orbit size in steady-state. The orbit and system size distributions are obtained as well as some performance measures of the system. The stochastic decomposition property and the asymptotic behavior under high rate of retrials are discussed. We also analyse some reliability problems, the k-busy period and the ordinary busy period of our retrial queue. Besides, we give a recursive scheme to compute the distribution of the number of served customers during the k-busy period and the ordinary busy period. The effects of several parameters on the system are analysed numerically. I. Atencia’s and Moreno’s research is supported by the MEC through the project MTM2005-01248.  相似文献   

6.
7.
We consider two important classes of single-server bulk queueing models: M(X)/G(Y)/1 with Poisson arrivals of customer groups, and G(X)/m(Y)1 with batch service times having exponential density. In each class we compare two systems and prove that one is more congested than the other if their basic random variables are stochastically ordered in an appropriate manner. However, it must be recognized that a system that appears congested to customers might be working efficiently from the system manager's point of view. We apply the results of this comparison to (i) the family {M/G(s)/1,s 1} of systems with Poisson input of customers and batch service times with varying service capacity; (ii) the family {G(s)/1,s 1} of systems with exponential customer service time density and group arrivals with varying group size; and (iii) the family {M/D/s,s 1} of systems with Poisson arrivals, constant service time and varying number of servers. Within each family, we find the system that is the best for customers, but this turns out to be the worst for the manager (or vice versa). We also establish upper (or lower) bounds for the expected queue length in steady state and the expected number of batches (or groups) served during a busy period. The approach of the paper is based on the stochastic comparison of random walks underlying the models.This research was partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.  相似文献   

8.
Glazebrook  K.D.  Lumley  R.R.  Ansell  P.S. 《Queueing Systems》2003,45(2):81-111
We consider the optimal service control of a multiclass M/G/1 queueing system in which customers are served nonpreemptively and the system cost rate is additive across classes and increasing convex in the numbers present in each class. Following Whittle's approach to a class of restless bandit problems, we develop a Langrangian relaxation of the service control problem which serves to motivate the development of a class of index heuristics. The index for a particular customer class is characterised as a fair charge for service of that class. The paper develops these indices and reports an extensive numerical investigation which exhibits strong performance of the index heuristics for both discounted and average costs.  相似文献   

9.
Christos Langaris 《TOP》1999,7(2):305-322
A Markovian polling model with a mixture of exhaustive and gated type stations is considered. The cuttomers are ofn different tppes and arrive to the system acccording to the Poisson distribution, in batches containing customers of all types (correlated batch arrivals). The customers who find upon arrival the server unavailable repeat their arrival individually after a random amount of time (retrial customers). The service timesT i and the switchover timesV ij are arbitrarily distributed with different distributions for the different stations. For such a model we obtain formulae for the expected number of customers in each station in a steady state. Our formulae hold also for zero switchover periods and can easily be adapted to hold for the corresponding ordinary Markovian mixed polling models with/without switchover times and correlated batch arrivals. Numerical calculations are finally used to observe system's performance.  相似文献   

10.
In this paper, we study a discrete-time queueing system with one server and two classes of customers. Customers enter the system according to a general independent arrival process. The classes of consecutive customers, however, are correlated in a Markovian way. The system uses a “global FCFS” service discipline, i.e., all arriving customers are accommodated in one single FCFS queue, regardless of their classes. The service-time distribution of the customers is general but class-dependent, and therefore, the exact order in which the customers of both classes succeed each other in the arrival stream is important, which is reflected by the complexity of the system content and waiting time analysis presented in this paper. In particular, a detailed waiting time analysis of this kind of multi-class system has not yet been published, and is considered to be one of the main novelties by the authors. In addition to that, a major aim of the paper is to estimate the impact of interclass correlation in the arrival stream on the total number of customers in the system, and the customer delay. The results reveal that the system can exhibit two different classes of stochastic equilibrium: a “strong” equilibrium where both customer classes give rise to stable behavior individually, and a “compensated” equilibrium where one customer type creates overload.  相似文献   

11.
On priority queues with impatient customers   总被引:1,自引:0,他引:1  
In this paper, we study three different problems where one class of customers is given priority over the other class. In the first problem, a single server receives two classes of customers with general service time requirements and follows a preemptive-resume policy between them. Both classes are impatient and abandon the system if their wait time is longer than their exponentially distributed patience limits. In the second model, the low-priority class is assumed to be patient and the single server chooses the next customer to serve according to a non-preemptive priority policy in favor of the impatient customers. The third problem involves a multi-server system that can be used to analyze a call center offering a call-back option to its impatient customers. Here, customers requesting to be called back are considered to be the low-priority class. We obtain the steady-state performance measures of each class in the first two problems and those of the high-priority class in the third problem by exploiting the level crossing method. We furthermore adapt an algorithm from the literature to obtain the factorial moments of the low-priority queue length of the multi-server system exactly.   相似文献   

12.
Choi  Bong Dae  Kim  Bara  Chung  Jinmin 《Queueing Systems》2001,38(1):49-66
We introduce a simple approach for the analysis of the M/M/c queues with a single class of customers and constant impatience time by finding simple Markov processes (see (2.1) and (2.15) below), and then by applying this approach we analyze the M/M/1 queues with two classes of customers in which class 1 customers have impatience of constant duration, and class 2 customers have no impatience and lower priority than class 1 customers.  相似文献   

13.
In a queueing system with preemptive loss priority discipline, customers disappear from the system immediately when their service is preempted by the arrival of another customer with higher priority. Such a system can model a case in which old requests of low priority are not worthy of deferred service. This paper is concerned with preemptive loss priority queues in which customers of each priority class arrive in a Poisson process and have general service time distribution. The strict preemption in the existing model is extended by allowing the preemption distance parameterd such that arriving customers of only class 1 throughp — d can preempt the service of a customer of classp. We obtain closed-form expressions for the mean waiting time, sojourn time, and queue size from their distributions for each class, together with numerical examples. We also consider similar systems with server vacations.  相似文献   

14.
We study a BMAP/>SM/1 queue with batch Markov arrival process input and semi‐Markov service. Service times may depend on arrival phase states, that is, there are many types of arrivals which have different service time distributions. The service process is a heterogeneous Markov renewal process, and so our model necessarily includes known models. At first, we consider the first passage time from level {κ+1} (the set of the states that the number of customers in the system is κ+1) to level {κ} when a batch arrival occurs at time 0 and then a customer service included in that batch simultaneously starts. The service descipline is considered as a LIFO (Last‐In First‐Out) with preemption. This discipline has the fundamental role for the analysis of the first passage time. Using this first passage time distribution, the busy period length distribution can be obtained. The busy period remains unaltered in any service disciplines if they are work‐conserving. Next, we analyze the stationary workload distribution (the stationary virtual waiting time distribution). The workload as well as the busy period remain unaltered in any service disciplines if they are work‐conserving. Based on this fact, we derive the Laplace–Stieltjes transform for the stationary distribution of the actual waiting time under a FIFO discipline. In addition, we refer to the Laplace–Stieltjes transforms for the distributions of the actual waiting times of the individual types of customers. Using the relationship between the stationary waiting time distribution and the stationary distribution of the number of customers in the system at departure epochs, we derive the generating function for the stationary joint distribution of the numbers of different types of customers at departures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
In this paper we study a queueing model of assembly-like manufacturing operations. This study was motivated by an examination of a circuit pack testing procedure in an AT & T factory. However, the model may be representative of many manufacturing assembly operations. We assume that customers fromn classes arrive according to independent Poisson processes with the same arrival rate into a single-server queueing station where the service times are exponentially distributed. The service discipline requires that service be rendered simultaneously to a group of customers consisting of exactly one member from each class. The server is idle if there are not enough customers to form a group. There is a separate waiting area for customers belonging to the same class and the size of the waiting area is the same for all classes. Customers who arrive to find the waiting area for their class full, are lost. Performance measures of interest include blocking probability, throughput, mean queue length and mean sojourn time. Since the state space for this queueing system could be large, exact answers for even reasonable values of the parameters may not be easy to obtain. We have therefore focused on two approaches. First, we find upper and lower bounds for the mean sojourn time. From these bounds we obtain the asymptotic solutions as the arrival rate (waiting room, service rate) approaches zero (infinity). Second, for moderate values of these parameters we suggest an approximate solution method. We compare the results of our approximation against simulation results and report good correspondence.  相似文献   

16.
This paper considers a class of stationary batch-arrival, bulk-service queues with generalized vacations. The system consists of a single server and a waiting room of infinite capacity. Arrivals of customers follow a batch Markovian arrival process. The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in groups of fixed size B. For this class of queues, we show that the vector probability generating function of the stationary queue length distribution is factored into two terms, one of which is the vector probability generating function of the conditional queue length distribution given that the server is on vacation. The special case of batch Poisson arrivals is carefully examined, and a new stochastic decomposition formula is derived for the stationary queue length distribution.AMS subject classification: 60K25, 90B22, 60K37  相似文献   

17.
Motivated by applications in telephone call centers, we consider a service system model with m customer classes and r server pools. The model is one with doubly stochastic arrivals, which means that the m-vector λ of instantaneous arrival rates is allowed to vary both temporally and stochastically. Two levels of dynamic control are considered: customers may be either blocked or accepted at the time of their arrival, and then accepted customers of each class must be routed, either immediately upon acceptance or after some period of waiting, to a server pool that is qualified to handle that class. Customers who are made to wait before commencement of their service are liable to defect. The objective is to minimize the expected sum of blocking costs, waiting costs and defection costs over a fixed and finite planning horizon. We consider an asymptotic parameter regime in which (i) the arrival rates, service rates and defection rates are uniformly accelerated by a large factor κ, then (ii) arrival rates are increased by an additional factor g(κ), and the number of servers in each pool is increased by g(κ) as well. This produces a separation of time scales, justifying a pointwise stationary stochastic fluid approximation for our original system model. In the stochastic fluid approximation, optimal admission control and routing decisions are determined by a simple linear program that uses the current arrival rate vector λ as data. We explain how to implement the fluid model's optimal control policy in our original service system context, and prove that the proposed implementation is asymptotically optimal in the first-order sense. AMS subject classification: 60K30, 90B15, 90B36  相似文献   

18.
19.
Bratiychuk  M.S.  Kempa  W. 《Queueing Systems》2003,44(1):51-67
The G /G/1-type batch arrival system is considered. We deal with non-steady-state characteristics of the system like the first busy period and the first idle time, the number of customers served on the first busy period. The study is based on a generalization of Korolyuk's method which he developed for semi-Markov random walks.  相似文献   

20.
In this paper, we investigate multi-class multi-server queueing systems with global FCFS policy, i.e., where customers requiring different types of service—provided by distinct servers—are accommodated in one common FCFS queue. In such scenarios, customers of one class (i.e., requiring a given type of service) may be hindered by customers of other classes. The purpose of this paper is twofold: to gain (qualitative and quantitative) insight into the impact of (i) the global FCFS policy and (ii) the relative distribution of the load amongst the customer classes, on the system performance. We therefore develop and analyze an appropriate discrete-time queueing model with general independent arrivals, two (independent) customer classes and two class-specific servers. We study the stability of the system and derive the system-content distribution at random slot boundaries; we also obtain mean values of the system content and the customer delay, both globally and for each class individually. We then extensively compare these results with those obtained for an analogous system without global FCFS policy (i.e., with individual queues for the two servers). We demonstrate that global FCFS, as well as the relative distribution of the load over the two customer classes, may have a major impact on the system performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号