首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
Thermal-stress induced phenomena in two-component material:Part Ⅱ   总被引:1,自引:1,他引:0  
The paper deals with analytical models of the elastic energy gradient Wsq representing an energy barrier. The energy barrier is a surface integral of the elastic energy density Wq. The elastic energy density is induced by thermal stresses acting in an isotropic spherical particle (q = p) with the radius R and in a cubic cell of an isotropic matrix (q = m). The spherical particle and the matrix are components of a multi-particle-matrix system representing a model system applicable to a real two-component material of a precipitation-matrix type. The multi-particle-matrix system thus consists of periodically distributed isotropic spherical particles and an isotropic infinite matrix. The infinite matrix is imaginarily divided into identical cubic cells with a central spherical particle in each of the cubic cells. The dimension d of the cubic cell then corresponds to an inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent micro- structural characteristics of a real two-component material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural charac- teristics. The thermal stresses originate during a cooling pro- cess as a consequence of the difference am - ap in thermal expansion coefficients between the matrix and the particle, am and ap, respectively. The energy barrier Wsq is used for the determination of the thermal-stress induced strengthening aq. The strengthening represents resistance against com- pressive or tensile mechanical loading for am - ap 〉 0 or am - ap 〈 0. respectively.  相似文献   

2.
This paper deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy. The anisotropic solid continuum consists of anisotropic spherical particles periodically distributed in an anisotropic infinite matrix. The particles are or are not embedded in an anisotropic spherical envelope, and the infinite matrix is imaginarily divided into identical cubic cells with central particles. The thermal stresses are thus investigated within the cubic cell. This mulfi-particle-(envelope)-matrix system based on the cell model is applicable to two- and three-component materials of precipitate-matrix and precipitate-envelope-matrix types, respectively. Finally, an analysis of the determination of the thermal stresses in the multi-par- ticle-(envelope)-matrix system which consists of isotropic as well as uniaxial- and/or triaxial-anisotropic components is presented. Additionally, the thermal-stress induced elastic energy density for the anisotropic components is also derived. These analytical models which are valid for isotropic, anisotropic and isotropic-anisotropic multi-particle- (envelope)-matrix systems represent the determination of important material characteristics. This analytical determination includes: (1) the determination of a critical particle radius which defines a limit state regarding the crack initiation in an elastic, elastic-plastic and plastic components; (2) the determination of dimensions and a shape of a crack propagated in a ceramic components; (3) the determination of an energy barrier and micro-/macro-strengthening in a component; and (4) analytical-(experimental)-computational methods of the lifetime prediction. The determination of the thermal stresses in the anisotropic components presented in this paper can be used to determine these material characteristics of real two- and three-component materials with anisotropic components or with anisotropic and isotropic components.  相似文献   

3.
Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials.  相似文献   

4.
Void closing from a spherical shape to a crack is investigated quantitatively in the present study. The constitutive relation of the Void-free matrix is assumed to obey the Norton power law. A representative volume element (RVE) which includes matrix and void is employed and a Rayleigh-Ritz procedure is developed to study the deformation-rates of a spherical void and a penny-shaped crack. Based on an approximate interpolation scheme, an analytical model for void closure in nonlinear plastic materials is established. It is found that the local plastic flows of the matrix material are the main mechanism of void deformation. It is also shown that the relative void volume during the deformation depends on the Norton exponent, on the far-field stress triaxiality, as well as on the far-field effective strain. The predictions of void closure using the present model are compared with the corresponding results in the literature, showing good agreement. The model for void closure provides a novel way for process design and optimization in terms of elimination of voids in billets because the model for void closure can easily be applied in the CAE analysis.  相似文献   

5.
In this paper, a new analytical method for vibration analysis of a cracked simply supported beam is investigated. By considering a nonlinear model for the fatigue crack, the governing equation of motion of the cracked beam is solved using perturbation method. The solution of the governing equation reveals the superhaxmonics of the fundamental frequency due to the nonlinear effects in the dynamic response of the cracked beam. Furthermore, considering such a solution, an explicit expression is also derived for the system damping changes due to the changes in the crack parameters, geometric dimensions and mechanical properties of the cracked beam. The results show that an increase in the crack severity and approaching the crack location to the middle of the beam increase the system damping. In order to validate the results, changes in the fundamental frequency ratios against the fatigue crack severities are compared with those of experimental results available in the literature. Also, a comparison is made between the free response of the cracked beam with a given crack depth and location obtained by the proposed analytical solution and that of the numerical method. The results of the proposed method agree with the experimental and numerical results.  相似文献   

6.
Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of the interface layer on the ratio of the energy release rate for infinitesimal deflected and penetrated crack is evaluated with the finite element method. The results show that the ratio of the energy release rates strongly depends on the elastic mismatch α1between the substrate and the driving layer.It also strongly depends on the elastic mismatch α2between the driving layer and the sensing layer for a thinner driving layer when a primary crack reaches an interface between the substrate and the driving layer. Moreover, with the increase in the thickness of the driving layer, the dependence on α2gradually decreases. The experimental observation on aluminum alloys monitored with intelligent coating shows that the established model can better explain the behavior of matrix crack penetration and can be used in optimization design of intelligent coating.  相似文献   

7.
The present paper deals with spherically symmetric deformation of an inclusion- matrix problem, which consists of an infinite isotropic matrix and a spherically uniform anisotropic piezoelectric inclusion. The interface between the two phases is supposed to be perfect and the system is subjected to uniform loadings at infinity. Exact solutions are obtained for solid spherical piezoelectric inclusion and isotropic matrix. When the system is subjected to a remote traction, analytical results show that remarkable nature exists in the spherical inclusion. It is demonstrated that an infinite stress appears at the center of the inclusion. Furthermore, a cavitation may occur at the center of the inclusion when the system is subjected to uniform tension, while a black hole may be formed at the center of the inclusion when the applied traction is uniform pressure. The appearance of different remarkable nature depends only on one non-dimensional material parameter and the type of the remote traction, while is independent of the magnitude of the traction.  相似文献   

8.
This paper attempts to estimate the ultimate strength of a laminated composite only based on its con- stituent properties measured independently. Three important issues involved have been systematically addressed, i.e., stress calculation for the constituent fiber and matrix materials, failure detection for the lamina and laminate upon the internal stresses in their constituents, and input data determination of the constituents from monolithic measurements. There are three important factors to influence the accuracy of the strength prediction. One is the stress concentration factor (SCF) in the matrix. Another is matrix plasticity. The third is thermal residual stresses in the constituents. It is these three factors, however, that have not been sufficiently well realized in the composite community. One can easily find out the elastic and strength parameters of a great many laminae and laminates in the current literature. Unfortunately, necessary information to determine the SCF, the matrix plasticity, and the thermal residual stresses of the composites is rare or incomplete. A useful design methodology is demonstrated in the paper.  相似文献   

9.
The transient thermal response of a thick orthotropic hollow cylinder with finite length is studied by a high order shell theory. The radial and axial displacements are assumed to have quadratic and cubic variations through the thickness, respectively. It is important that the radial stress is approximated by a cubic expansion satisfying the boundary conditions at the inner and outer surfaces, and the corresponding strain should be least-squares compatible with the strain derived from the strain-displacement relation. The equations of motion are derived from the integration of the equilibrium equations of stresses, which are solved by precise integration method (PIM). Numerical results are.obtained, and compared with FE simulations and dynamic thermo-elasticity solutions, which indicates that the high order shell theory is capable of predicting the transient thermal response of an orthotropic (or isotropic) thick hollow cylinder efficiently, and for the detonation tube of actual pulse detonation engines (PDE) heated continuously, the thermal stresses will become too large to be neglected, which are not like those in the one time experiments with very short time.  相似文献   

10.
The problem of steady rotation of a compositesphere located at the centre of a spherical container has beeninvestigated.A composite particle referred to in this paperis a spherical solid core covered with a permeable sphericalshell.The Brinkman’s model for the flow inside the composite sphere and the Stokes equation for the flow in the spherical container were used to study the motion.The torque experienced by the porous spherical particle in the presence ofcavity is obtained.The wall correction factor is calculated.In the limiting cases,the analytical solution describing thetorque for a porous sphere and for a solid sphere in an unbounded medium are obtained from the present analysis.  相似文献   

11.
The combined effect of rotation and magnetic field is investigated for the axisymmetric flow due to the motion of a sphere in an inviscid, incompressible electrically conducting fluid having uniform rotation far upstream. The steady-state linearized equations contain a single parameter α=1/2βR m, β being the magnetic pressure number and R m the magnetic Reynolds number. The complete solution for the flow field and magnetic field is obtained and the distribution of vorticity and current density is found. The induced vorticity is O(α4) and the current density is O(R m) on the sphere.  相似文献   

12.
Ladislav Ceniga 《Meccanica》2012,47(4):845-855
This paper deals with analytical modelling of thermal stresses in a multi-particle-matrix system with isotropic spherical particles. These particles are periodically distributed in an isotropic infinite matrix. This model system which is characterized by microstructural parameters (particle volume fraction, particle radius) is applicable to two-phase composites of a precipitate-matrix type with isotropic phases. The thermal stresses originate during a cooling process due to a difference in thermal expansion coefficients. The analytical modelling which is based on fundamental equations of solid continuum mechanics represents a combination of different mathematical procedures applied to equilibrium and compatibility equations. This novel analytical model is compared with that which is based on mathematical procedures applied to the equilibrium equations only. The energy analysis of both analytical models which is applied to the SiC-Al2O3 composite is presented.  相似文献   

13.
The streamwise evolution of an inclined circular cylinder wake was investigated by measuring all three velocity and vorticity components using an eight-hotwire vorticity probe in a wind tunnel at a Reynolds number Red of 7,200 based on free stream velocity (U ) and cylinder diameter (d). The measurements were conducted at four different inclination angles (α), namely 0°, 15°, 30°, and 45° and at three downstream locations, i.e., x/d = 10, 20, and 40 from the cylinder. At x/d = 10, the effects of α on the three coherent vorticity components are negligibly small for α ≤ 15°. When α increases further to 45°, the maximum of coherent spanwise vorticity reduces by about 50%, while that of the streamwise vorticity increases by about 70%. Similar results are found at x/d = 20, indicating the impaired spanwise vortices and the enhancement of the three-dimensionality of the wake with increasing α. The streamwise decay rate of the coherent spanwise vorticity is smaller for a larger α. This is because the streamwise spacing between the spanwise vortices is bigger for a larger α, resulting in a weak interaction between the vortices and hence slower decaying rate in the streamwise direction. For all tested α, the coherent contribution to [`(v2)] \overline{{v^{2}}} is remarkable at x/d = 10 and 20 and significantly larger than that to [`(u2)] \overline{{u^{2}}} and [`(w2)]. \overline{{w^{2}}}. This contribution to all three Reynolds normal stresses becomes negligibly small at x/d = 40. The coherent contribution to [`(u2)] \overline{{u^{2}}} and [`(v2)] \overline{{v^{2}}} decays slower as moving downstream for a larger α, consistent with the slow decay of the coherent spanwise vorticity for a larger α.  相似文献   

14.
For a given m=(m1,...,mn)(R+)n, let p and q(R3)n be two central configurations for m. Then we call p and q equivalent and write pq if they differ by an SO(3) rotation followed by a scalar multiplication as well as by a permutation of bodies. Denote by L(n,m) the set of equivalent classes of n-body collinear central configurations in R3 for any given mass vector m=(m1,...,mn)(R+)n. The main discovery in this paper is the existence of a union H3 of three non-empty algebraic surfaces in the mass half space (m1,m2m1,m3m2)R+×R2 besides the planes generated by equal masses, which decreases the number of collinear central configurations. The union H3 in R+×R 2 is explicitly constructed by three 6-degree homogeneous polynomials in three variables such that, for any mass vector m=(m1,m2,m3)(R+)3, # L(3,m)=3, if m1, m2, and m3 are mutually distinct and (m1,m2m1,m3m2)H3, # L(3,m)=2, if m1, m2, and m3 are mutually distinct and (m1,m2m1,m3m2)H3, # L(3,m)=2, if two of m1, m2, and m3 are equal but not the third, # L(3,m)=1, if m1=m2=m3. We give also a sharp upper bound on #L(n,m) for any positive mass vector m(R+)n.  相似文献   

15.
Two optical methods, light absorption and LDA, are applied to measure the concentration and velocity profiles of droplet suspensions flowing through a tube. The droplet concentration is non-uniform and has two maxima, one near the tube wall and one on the tube axis. The measured velocity profiles are blunted, but a central plug-flow region is not observed. The concentration of droplets on the tube axis and the degree of velocity profile blunting depend on relative viscosity. These results can be qualitatively compared with the theory of Chan and Leal.List of symbols a particle radius,m - a/R, non-dimensional particle radius - c volume concentration of droplets in suspension, m3/m3 - c 5 stream-average volume concentration of droplets in suspension, - D 2 R, tube diameter, m - L optical path length, m - L ij path length of laser beam through thej-th concentric layer when the beam crosses the tube diameter at the point on the inner circumference of thei-th layer, m - N exponent in Eqs. (3) and (4) - Q volumetric flowrate of suspension, - R tube radius, m - Re S S D, flow Reynolds number - r radial position (r = 0 on a tube axis), m - r r/R, non-dimensional radial position - v velocity of suspension, m/s - v v/v S , non-dimensional velocity - v 0 centre-line velocity of suspension (r = 0), m/s - v S Q/ R 2, stream-average velocity of suspension, m/s - x streamwise position (x = 0 at tube inlet), m - x x/D, non-dimensional streamwise position - c density of continuous phase, kg/m3 - d density of dispersed phase, kg/m3 - s stream-average density of suspension, kg/m3, equals density when homogenized - d - c, phase density difference, kg/m3 - µc viscosity of continuous phase, Pa · s - µd viscosity of dispersed (droplet) phase, Pa · s - µd/c, viscosity ratio - interfacial tension, N/m This work was financially supported by the National Science Foundation (USA) through an agreement no. J-F7F019P, M. Sklodowska-Curie fund  相似文献   

16.
This paper presents some experimental and theoretical results for dispersion processes occurring in consolidated Berea sandstone with radial flow geometry. A comprehensive review of the derivation and application of several analytical solutions is also presented. The Galerkin finite element method is applied to solve the advection-dispersion equation for unidimensional radial flow.Individual and combined effects of mechanical dispersion and molecular diffusion are examined using velocity-dependent dispersion models. Comparison of simulated results with experimental data is made. The effect of flow rates is examined. The results suggest that a linear dispersion model,D=u, whereD is the dispersion coefficient,u the velocity and a constant, is not a good approximation despite its wide acceptance in the literature. The most suitable mathematical formulation is given by an empirical form of , whereD ois the molecular diffusion coefficient. For the range of Péclet number (Pe=vd/D m,wherev is the characteristic velocity,d the characteristic length andD mthe molecular diffusion coefficient in porous media) examined (Pe=0.5 to 285), a power constant ofm=1.2 is obtained which agrees with the value reported by some other workers for the same regime.  相似文献   

17.
Presented are the effect of stress ratio and thickness on the fatigue crack growth rate of CK45 steel according to DIN 17200. Test results are obtained for constant amplitude load in tension with three stress ratios of R=0, 0.2 and 0.4 and three specimen thicknesses of B=6, 12 and 24 mm. Microgauge crack opening values were used to calculate ΔKeff values from which the da/dN − ΔKeff curves are obtained. Crack closure can be applied to explain the influence of mean stress and specimen thickness on the fatigue crack growth rate in the second regime of the two-parameter crack growth rate relation. An empirical model is chosen for calculating the normalized load ratio parameter U as a function of R, B and ΔK and, for correlating the test data.  相似文献   

18.
A full-field planar optical diagnostic technique for studying mixing in swirling flows is described. Results were obtained using this technique to provide planar mixing information by seeding a simulated fuel stream with aluminum oxide particles, then inferring concentration from Mie scattering intensity distributions. This facility and measurement technique are unique for several reasons. First, they allow spatial variations in laser sheet energy to be corrected for on a shot-to-shot basis. Second, they allow experiments to be performed for swirlers with practical fuel and oxidizer flow rates, i.e. on the order of 150 g/s (0.33 lbm/s). Finally, they allow full size swirler models to be evaluated, with the entire exit plane imaged simultaneously. Representative results are presented as false color images of the planar mixing fields. These images allow rapid assessment of the mixing process and its changes with variations in operating conditions or swirler geometry.List of Symbols C seed particle concentration, m–3 - mean component of seed particle concentration, m–3 - C fluctuating component of seed particle concentration, m–3 - C * time averaged ratio of rms particle concentration fluctuations to average particle concentration, dimensionless - d p particle diameter, m - I laser energy after passing through the flow, J/m2 - mean laser energy, J/m2 - I 0 laser energy before passing through the flow, J/m2 - L v eddy length scale, m - l laser beam path length, m - U v eddy velocity scale, m/s - V diode voltage reading after passing through the flow, V - mean diode voltage, V - V 0 diode voltage reading before passing through the flow, V - absorptivity, m2 - rel relative equivalence ratio, dimensionless - fluid viscosity, Ns - p particle density, kg/m3 - Stokes number= p / f , dimensionless - f flow time scale, s - p particle response time, s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号