首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metalation of N-phenylpyrrole by using an in situ mixture of ZnCl(2)TMEDA (0.5 equiv; TMEDA=N,N,N',N'-tetramethylethylenediamine) and LiTMP (1.5 equiv; TMP=2,2,6,6-tetramethylpiperidino) was optimized. The reaction carried out at room temperature in THF resulted in incomplete metalation (56 % conversion) and selectivity (mixture of 2-iodo and 2,2'-diiodo derivatives in an 86:14 ratio after trapping with iodine). By using diethyl ether (DEE), toluene, or hexane instead of THF, low conversions of 17, 38, or 23 % were observed, respectively, but the formation of the diiodide was avoided. When hexane was used as solvent, strong lithium-complexing ligands such as [12]crown-4 and N,N'-dimethylpropylideneurea (DMPU) inhibited the reaction whereas more (hemi)labile ligands (TMEDA>THF approximately DME) favored it. This result shows that a temporary accessibility of lithium to interact with the rest of the base and/or the substrate is a prerequisite for an efficient metalation. A 75 % yield of 2-iodo-N-phenylpyrrole was obtained after reaction with the base in the presence of five equivalents of TMEDA for two hours at room temperature, and subsequent trapping with iodine. We were able to successfully replace the spare TMP with a less expensive butyl group.  相似文献   

2.
In situ mixtures of CdCl2?TMEDA (0.5 equiv; TMEDA=N,N,N′,N′‐tetramethylethylenediamine) or InCl3 (0.33 equiv) with [Li(tmp)] (tmp=2,2,6,6‐tetramethylpiperidino; 1.5 or 1.3 equiv, respectively) were compared with the previously described mixture of ZnCl2?TMEDA (0.5 equiv) and [Li(tmp)] (1.5 equiv) for their ability to deprotonate anisole, benzothiazole, and pyrimidine. [(tmp)3CdLi] proved to be the best base when used in tetrahydrofuran at room temperature, as demonstrated by subsequent trapping with iodine. The Cd–Li base then proved suitable for the metalation of a large range of aromatics including benzenes bearing reactive functional groups (CONEt2, CO2Me, CN, COPh) or heavy halogens (Br, I), and heterocycles (from the furan, thiophene, pyrrole, oxazole, thiazole, pyridine, and diazine series). Five‐membered heterocycles benefiting from doubly activated positions were similarly dideprotonated at room temperature. The aromatic lithium cadmates thus obtained were involved in palladium‐catalyzed cross‐coupling reactions or simply quenched with acid chlorides.  相似文献   

3.
It is presented that a number of o-2-hydroxyalkylanisoles could be efficiently synthesized through the regioselective ring-opening reaction of epoxides with o-lithioanisoles in the presence of BF3·OEt2 Lewis-acid catalyst. Sterically demanding o-lithioanisoles had to be generated by exploiting the combination of nBuLi and a catalytic amount of TMEDA (0.20 equiv) in Et2O as the lithiator whereas ‘normal’ anisole could be lithiated at ortho-position by treatment with nBuLi in THF as usual. Surprisingly, the availability of THF and a catalytic amount of TMEDA (0.20 equiv) in the reaction mixture was found to enhance the reaction yields dramatically. A complex aggregate formation by the co-operative ligation of THF and TMEDA to ortho-lithioanisole(s) was proposed to rationalize the high reactivity achieved in the ring-opening reaction of epoxides.  相似文献   

4.
Thiophene was regioselectively deprotonated at C2 on treatment with 1/3 equiv of Bu3MgLi in THF at room temperature. The lithium arylmagnesate formed was either trapped with electrophiles or cross-coupled in a ‘one-pot’ procedure with aryl halides under palladium catalysis. 2-Chlorothiophene and 2-methoxythiophene were similarly deprotonated at C5 under the same reaction conditions. The enhancement of the reactivity of the base using TMEDA was evidenced using 1H NMR spectroscopy.  相似文献   

5.
Deprotonation of benzoxazole, benzothiazole, benzo[b]thiophene, benzo[b]furan, N-Boc-protected indole and pyrrole, and N-phenylpyrazole using an in situ mixture of ZnCl(2).TMEDA (0.5 equiv) and lithium 2,2,6,6-tetramethylpiperidide (1.5 equiv) in THF at room temperature is described. The reaction was evidenced by trapping with iodine, regioselectively giving the expected functionalized derivatives in 52-73% yields. A mixture of mono- and disubstituted derivatives was obtained starting from thiazole. Cross-coupling reactions of 2-metalated benzo[b]thiophene and benzo[b]furan with heteroaromatic chlorides proved possible under palladium catalysis. A reaction pathway where the lithium amide and zinc diamide present in solution behave synergically was proposed for the deprotonation reaction, taking account of NMR and DFT studies carried out on the basic mixture.  相似文献   

6.
Multinuclear NMR studies of five-membered-ring amine chelated aryllithium reagents 2-lithio-N,N-dimethylbenzylamine (1), the diethylamine and diisopropylamino analogues (2, 3), and the o-methoxy analogue (4), isotopically enriched in (6)Li and (15)N, have provided a detailed picture of the solution structures in ethereal solvents (usually in mixtures of THF and dimethyl ether, ether, and 2,5-dimethyltetrahydrofuran). The effect of cosolvents such as TMEDA, PMDTA, and HMPA has also been determined. All compounds are strongly chelated, and the chelation is not disrupted by these cosolvents. Reagents 1, 2, and 3 are dimeric in solvents containing a large fraction of THF. Below -120 degrees C, three chelation isomers of the dimers are detectable by NMR spectroscopy: one (A) with both nitrogens coordinated to one lithium of the dimer, and two (B and C) in which each lithium bears one chelating group. Dynamic NMR studies have provided rates and activation energies for the interconversion of the 1-A, 1-B, and 1-C isomers. They interconvert either by simple ring rotation, which interconverts B and C, or by amine decoordination (probably associative, DeltaG(++)(-93) = 8.5 kcal/mol), which can interconvert all of the isomers. The dimers of 1 are thermodynamically more stable than those of model systems such as phenyllithium, o-tolyllithium, or 2-isoamylphenyllithium (5, DeltaDeltaG > or = 3.3 kcal/mol). They are not detectably deaggregated by TMEDA or PMDTA, although HMPA causes partial deaggregation. The dimers are also more robust kinetically with rates of interaggregate exchange, measured by DNMR line shape analysis of the C-Li signal, orders of magnitude smaller than those of models (DeltaDeltaG(++) > or = 4.4 kcal/mol). Similarly, the mixed dimer of 1 and phenyllithium, 13, is kinetically more stable than the phenyllithium dimer by >2.2 kcal/mol. X-ray crystal structures of the TMEDA solvate of 1-A and the THF solvate of 3-B showed them to be dimeric and chelated in the solid state as well. Compound 4, which has a methoxy group ortho to the C-Li group, differs from the others in being only partially dimeric in THF, presumably for steric reasons. This compound is fully deaggregated by 1 equiv of HMPA. Excess HMPA leads to the formation of ca. 15% of a triple ion (4-T) in which both nitrogens appear to be chelated to the central lithium.  相似文献   

7.
The deprotonation of 2-methoxypyridine was attempted using putative (TMP)3FeLi prepared from different iron sources. Using iodine to intercept the metalated 2-methoxypyridine, the best result was obtained from FeBr2 (1 equiv) using THF at room temperature; nevertheless, in addition to the expected iodide, the corresponding 2,2′-dimer was obtained (86% total yield). The origin of the competitive formation of the 2,2′-dimer was not identified but mechanisms were suggested to explain its formation. It was observed that the nature of the electrophile employed to trap the 3-metalated 2-methoxypyridine has a strong impact on this dimer formation, the latter being favored using iodine (35% yield), but also benzophenone (28%), benzoyl chloride (22%), methyl iodide (27%), allyl bromide (15%), benzyl bromide (41%), and tetramethylthiuram disulphide (36%); for this reason, the yields of the expected derivatives were only 51, 15, 62, 0, <5, 18, and 0%, respectively. In contrast, using aldehydes readily led to the expected pyridine alcohols without dimerization (59% yield using 3,4,5-trimethoxybenzaldehyde and 66% yield using pivalaldehyde). 2,6-Dimethoxypyridine (in 68% yield), anisole (47%), 2,4-dimethoxypyrimidine (50% at C5 and 3% at C6), 2-fluoropyridine (64%), and thiophene (49%) were similarly converted into the corresponding alcohols after subsequent trapping with pivalaldehyde. Using iodine to trap the 2-metalated anisole did not lead to dimer formation, and 2-iodoanisole was isolated in 71% yield.  相似文献   

8.
N-Lithio-N-(trialkylsilyl)allylamines can be deprotonated in the presence of ethereal solvents exclusively at the cis-vinylic position to yield 3,N-dilithio-N-(trialkylsilyl)allylamines under mild conditions. Low temperature (1)H and (7)Li NMR ((1)H NOESY, TOCSY, (1)H/(7)Li HSQC, and DO-NMR) studies on the solution structure of 3,N-dilithio-N-(tert-butyldimethylsilyl)allylamine identified three major aggregates in THF (monomer, dimer and tetramer), but the aggregate structures failed to explain the solvent dependence and regiochemical outcome of the reaction. Low temperature (1)H NMR (NOESY, TOCSY, DO-NMR) studies on the solution structure of N-lithio-N-(tert-butyldimethylsilyl)allylamine in the presence of nBuLi identified amide/nBuLi mixed aggregates in both the ethereal solvent THF (1:1 dimer) and the hydrocarbon solvent toluene (1:3 tetramer). Addition of 2 equiv of THF to toluene solutions induces the formation of the same THF solvated 1:1 dimer as observed in neat THF. NMR evidence suggests that in THF the mixed aggregate has close contact between the olefin and the beta-CH(2) of nBuLi, while in the absence of THF, the allyl chain appears to be pointed away from the nearest nBuLi residues.  相似文献   

9.
The alpha,alpha'-stabilized carbanion complexes [PhSO(2)CHCNNa.THF], 3, [t-BuSO(2)CHCNNa], 4, [PhSO(2)CHCNK], 5, [t-BuSO(2)CHCNK], 6, and [MeSO(2)CHCNLi.TMEDA], 7, have been synthesized via the metalation of the parent (organo)sulfonylacetonitriles by BuLi, BuNa, or BnK in THF solution (or THF/TMEDA in the case of 7). In addition, complexes 3 and 7 have been characterized by single-crystal X-ray analyses and have been found to adopt related structures in the solid state. Complex 7 is a molecular dimer containing a central 12-membered (OSCCNLi)(2) ring core, with each metal rendered tetracoordinate by binding to a chelating TMEDA molecule. As found in related complexes, no direct carbanion to lithium contacts are present in the structure of 7. Complex 3 forms a polymeric cage structure composed of associated "dimeric" (OSCCNNa)(2) rings, similar to those found in 7. The larger sodium cations, and the presence of only one THF molecule/metal, allow additional contacts with the anions, leading to hexacoordination at the metal centers. These contacts include long-range transannular Na-N interactions (2.8042(14) A) across the central dimeric ring and "interdimer" Na-C connections (2.8718(15) A). Dissolution of complexes 3-6 and their lithiated derivatives [PhSO(2)CHCNLi.TMEDA], 1, and [t-BuSO(2)CHCNLi.THF], 2, in DMSO-d(6) results in almost identical chemical shifts for each type of ligand. This suggests that charge-separated complexes of the form [RSO(2)CHCN](-)[M(DMSO-d(6))(n)()](+) are formed in highly polar solution.  相似文献   

10.
Treatment of calcium bromide with 3,5-di-tert-butylpyrazolatopotassium (2 equiv) in tetrahydrofuran afforded Ca(tBu2pz)2(THF)2 (69%). The reaction of this compound with pyridine (3 equiv), tetramethylethylenediamine (TMEDA, 1 equiv), N,N,N',N',N"-pentamethyldiethylenetriamine (PMDETA, 1 equiv), triglyme (1 equiv), and tetraglyme (1 equiv) yielded Ca(tBu2pz)2(py)3 (51%), Ca(tBu2pz)2(TMEDA) (74%), Ca(tBu2pz)2(PMDETA) (50%), Ca(tBu2pz)2(triglyme) (73%), and Ca(tBu2pz)2(tetraglyme) (57%), respectively. Treatment of the tetrahydrofuran adduct of Ca(Me2pz)2, generated in situ, with PMDETA (1 equiv), triglyme (1 equiv), and tetraglyme (1 equiv) afforded Ca(Me2pz)2(PMDETA) (65%), Ca(Me2pz)2(triglyme) (54%), and Ca(Me2pz)2(tetraglyme) (40%), respectively. The X-ray crystal structures of Ca(tBu2pz)2(py)3, Ca(tBu2pz)2(TMEDA), Ca(tBu2pz)2(PMDETA), Ca(tBu2pz)2(triglyme), and Ca(Me2pz)2(PMDETA) revealed six-, seven-, or eight-coordinate calcium centers with eta 2-pyrazolato ligands. Ca(tBu2pz)2(triglyme) sublimes at 160 degrees C (0.1 mmHg). The potential utility of these complexes as source compounds for chemical vapor deposition processes is discussed.  相似文献   

11.
Reaction of anhydrous YbCl3 with 1 equiv, of LLi [L=p-ClPhNC(Me)CH(Me)N(C6H3-2,6-i-Pr2)] in THF at room temperature gave the β-diketiminate lanthanide dichloride LYbCl2(THF)2 (1) in good isolated yield. Similarly reaction of anhydrous YbCl3 with 1 equiv, of LLi, then with 1 equiv, of t-BuCpNa in THF yielded the expected mixed-ligand β-diketiminate ytterbium chloride (t-BuCp)YbL(μ-Cl)2Li(THF)2 (2). Both 1 and 2 were well characterized by elemental analysis, IR spectra, ^1H NMR spectra, and X-ray diffraction analysis.  相似文献   

12.
The reaction of anhydrous YbCl3 with 1 equiv. of Li2Me2Si(NPh)2 in THF, after workup, yielded a ytterbium(III) chloride [{Me2Si(NPh)2Yb}(μ2‐Cl)(TMEDA)]2·3PhMe ( 1 ) (TMEDA=tetramethylethanediamine). The same reaction followed by treatment with Na‐K alloy afforded a new ytterbium(II) complex supported by a bridged diamide with four coordinated LiCl molecules, [{Me2Si(NPh)2Yb(THF)2}(μ3‐Cl)(μ4‐Cl){Li(THF)}2]2·2THF ( 2 ) in high yield. Both complexes were structurally characterized by X‐ray analysis to be dimers. Complex 1 was a chlorine‐bridged dimer with ytterbium in a distorted octahedral geometry. In complex 2 two [Me2Si(NPh)2Yb(THF)2]‐(μ3‐Cl)[Li(THF)]2 moieties were connected with each other by two μ4‐Cl bridges to form a "chair‐form" framework.  相似文献   

13.
3-Fluoropyridine was deprotonated on treatment with 1/3 equiv of Bu3MgLi in THF at −10 °C. The lithium arylmagnesate formed was either trapped with electrophiles or involved in a palladium-catalyzed cross-coupling reaction with 2-bromopyridine. The use of a less nucleophilic lithium-magnesium-dialkylamide, (TMP)3MgLi, allowed the reaction of 3-fluoroquinoline, giving the 2,2′-dimeric derivative. 2-Fluoropyridine and 2,6-difluoropyridine were deprotonated using 1/3 equiv of the highly coordinated magnesate Bu4MgLi2 in THF at −10 °C in the presence of a substoichiometric amount of 2,2,6,6-tetramethylpiperidine. 1,3-Difluorobenzene reacted similarly when treated with Bu3MgLi; the reactivity of the base proved to be enhanced by the presence of TMEDA.  相似文献   

14.
Stannylacetylenes 7a-e react with Cp(2)Zr(H)Cl in THF at room temperature to give the alpha-zirconated vinylstannane intermediates 8a-e, which subsequently react with butyltellurenyl bromide (2.0 equiv) to give exclusively ketene stannyl(telluro) acetals 6a-e of E configuration. Similar reactions were performed using phenylselenenyl bromide (2.0 equiv) as the electrophile, but a mixture of products was formed including the expected ketene stannyl(seleno) acetals 12. Otherwise, the use of 1.4 equiv of Cp(2)Zr(H)Cl and 1.0 equiv of PhSeBr results in the exclusive formation of 12, in good yields. Treatment of ketene stannyl(telluro) acetals with iodine or NBS followed by reductive dehalogenation results in the formation of 1-iodo-1-telluroalkenes 4a-e and 1-bromo-1-telluroalkenes 5a-e, respectively, with total retention of the configuration.  相似文献   

15.
A Density Functional Theory (DFT) study was carried out on structures of the lithium ester enolate of methyl isobutyrate (MIB-Li) in THF solution, in the presence of TMEDA, dimethoxyethane (DME), crown ether 12-crown-4, and cryptand-2,1,1, as electron donor ligands (sigma-ligands). Both specific solvation with THF and/or ligand molecules and nonspecific solvation by the solvent continuum were taken into account. The possibility of ligand-separated ion pair formation was analyzed for each of the ligands, including THF alone. In most cases peripherally solvated dimers are the most stable species. Only in the presence of cryptand-2,1,1 was a ligand-separated triple ion pair, (MIB-Li-MIB)(-)(THF)(2),Li(2,1,1)(1)(+), shown to be comparable in stability to the THF-solvated dimer, (MIB-Li)(2)(THF)(4). These results are in agreement with experimental NMR data on the structure of MIB-Li in the presence of DME, 12-crown-4, and cryptand-2,1,1. An upfield shift of the (13)C NMR signal of the alpha-carbon of MIB-Li observed in the presence of cryptand-2,1,1, originally attributed to a ligand-separated monomer, MIB(-),Li(2,1,1)(+), was well reproduced by Hartree--Fock calculated NMR shifts for the predicted ligand-separated triple ion pair.  相似文献   

16.
Trifluoroethenylzinc reagent [CF(2)=CFZnX] was generated from the readily available halocarbon HFC-134a by an in situ metalation-transmetalation procedure at temperatures near to room temperature (15-20 degrees C). By systematic standardization of the metalation experiments by manipulation of solvent, cosolvent, temperature, zinc salt, and the base, the trifluoroethenylzinc reagent was produced in 73% yield at 20 degrees C in THF medium. The palladium-catalyzed cross-coupling reaction of the trifluoroethenylzinc reagent with various aryl iodides was carried out under mild reaction conditions to produce 1,2,2-trifluorostyrenes in 59-86% isolated yields. The stability of the intermediate trifluoroethenyllithium reagent was compared at different temperatures and solvent systems. Experimental evidence for the mono-anion from HFC-134a (CF(3)CHF(-)) was obtained by the trapping of the mono-anion with zinc halide in THF/TMEDA medium. The structure and complexation of both the mono- and bis-trifluoroethenylzinc reagents with TMEDA and other ligands are discussed.  相似文献   

17.
Reaction of anhydrous rare earth metal halides MCl(3) with 2 equiv of 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-imine (Im(Dipp)NH) and 2 equiv of trimethylsilylmethyl lithium (Me(3)SiCH(2)Li) in THF furnished the complexes [(Im(Dipp)N)(2)MCl(THF)(n)] (M = Sc, Y, Lu). The molecular structures of all three compounds were established by single-crystal X-ray diffraction analyses. The coordination spheres around the pentacoordinate metal atoms are best described as trigonal bipyramids. Reaction of YbI(2) with 2 equiv of LiCH(2)SiMe(3) and 2 equiv of the imino ligand Im(Dipp)NH in tetrahydrofuran did not result in a divalent complex, but instead the Yb(III) complex [(Im(Dipp)N)(2)YbI(THF)(2)] was obtained and structurally characterized. Treatment of [(Im(Dipp)N)(2)MCl(THF)(n)] with 1 equiv of LiCH(2)SiMe(3) resulted in the formation of [(Im(Dipp)N)(2)M(CH(2)SiMe(3))(THF)(n)]. The coordination arrangement of these compounds in the solid state at the metal atoms is similar to that found for the starting materials, although the introduction of the neosilyl ligand induces a significantly greater distortion from the ideal trigonal-bipyramidal geometry. [(Im(Dipp)N)(2)Y(CH(2)SiMe(3))(THF)(2)] was used as precatalyst in the intramolecular hydroamination/cyclization reaction of various terminal aminoalkenes and of one aminoalkyne. The complex showed high catalytic activity and selectivity. A comparison with the previously reported dialkyl yttrium complex [(Im(Dipp)N)Y(CH(2)SiMe(3))(2)(THF)(3)] showed no clear tendency in terms of activity.  相似文献   

18.
Chia SP  Yeong HX  So CW 《Inorganic chemistry》2012,51(2):1002-1010
The synthesis and characterization of the digermylenes [LGe-GeL] [L = L(1) (3A), L(2) (3B)] supported by the 2,6-diiminophenyl (L(1)) and 2-imino-5,6-methylenedioxylphenyl (L(2)) ligands are described. Their reactivities toward potassium graphite are also reported. The reaction of [LGeCl] [L = L(1) (2A), L(2) (2B)] with KC(8) in tetrahydrofuran (THF) at room temperature afforded the digermylenes [LGe-GeL] [L = L(1) (3A), L(2) (3B)], which are the first examples of diaryldigermylenes stabilized by o-imino donor(s). The treatment of 3A with 2 equiv of KC(8) in Et(2)O, followed by the addition of excess tetramethylethylenediamine (TMEDA), results in cleavage of the Ge(I)-Ge(I) bond to afford the germylidenide anion [L(1)GeK·TMEDA] (4A). Similarly, the reaction of 3B with excess KC(8) in THF afforded the germylidenide anion [L(2)GeK] (4B). The molecular structures of compounds 4A and 4B as determined by single-crystal X-ray diffraction analysis show that the K atoms are η(1)-coordinated with the low-valent Ge atoms. Moreover, the negative charges at the Ge atoms in compounds 4A and 4B are stabilized by electron delocalization in the germanium heterocycles.  相似文献   

19.
The deprotonation of anisole was attempted using different homo- and heteroleptic TMP/Bu mixed lithium-cobalt combinations. Using iodine to intercept the metalated anisole, an optimization of the reaction conditions showed that in THF at room temperature 2 equiv of base were required to suppress the formation of the corresponding 2,2′-dimer. The origin of the dimer was not identified, but its formation was favored with allyl bromide as electrophile. The metalated anisole was efficiently trapped using iodine, anisaldehyde, and chlorodiphenylphosphine, and moderately employing benzophenone, and benzoyl chloride. 1,2-, 1,3-, and 1,4-dimethoxybenzene were similarly converted regioselectively to the corresponding iodides. It was observed that 2-methoxy- and 2,6-dimethoxypyridine were more prone to dimerization than the corresponding benzenes when treated similarly. Involving ethyl benzoate in the metalation-iodination sequence showed that the method was not suitable to functionalize substrates bearing reactive functions.  相似文献   

20.
Deprotonative cupration of aromatics including heterocycles (anisole, 1,4-dimethoxybenzene, thiophene, furan, 2-fluoropyridine, 2-chloropyridine, 2-bromopyridine, and 2,4-dimethoxypyrimidine) was realized in tetrahydrofuran at room temperature using the Gilman-type amido-cuprate (TMP)2CuLi in situ prepared from CuCl2·TMEDA through successive addition of 1 equiv of butyllithium and 2 equiv of LiTMP. The intermediate lithium (hetero)arylcuprates were evidenced by trapping with iodine, allyl bromide, methyl iodide, and benzoyl chlorides, the latter giving the best results. Symmetrical dimers were also prepared from lithium azine and diazine cuprates using nitrobenzene as an oxidative agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号