首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.  相似文献   

2.
3.
Multiple low-lying electronic states of M(3)O(9)(-) and M(3)O(9)(2-) (M = Mo, W) arise from the occupation of the near-degenerate low-lying virtual orbitals in the neutral clusters. We used density functional theory (DFT) and coupled cluster theory (CCSD(T)) with correlation consistent basis sets to study the structures and energetics of the electronic states of these anions. The adiabatic and vertical electron detachment energies (ADEs and VDEs) of the anionic clusters were calculated with 27 exchange-correlation functionals including one local spin density approximation functional, 13 generalized gradient approximation (GGA) functionals, and 13 hybrid GGA functionals, as well as the CCSD(T) method. For M(3)O(9)(-), CCSD(T) and nearly all of the DFT exchange-correlation functionals studied predict the (2)A(1) state arising from the Jahn-Teller distortion due to singly occupying the degenerate e' orbital to be lower in energy than the (2)A(1)' state arising from singly occupying the nondegenerate a(1)' orbital. For W(3)O(9)(-), the (2)A(1) state was predicted to have essentially the same energy as the (2)A(1)' state at the CCSD(T) level with core-valence correlation corrections included and to be higher in energy or essentially isoenergetic with most DFT methods. The calculated VDEs from the CCSD(T) method are in reasonable agreement with the experimental values for both electronic states if estimates for the corrections due to basis set incompleteness are included. For M(3)O(9)(2-), the singlet state arising from doubly occupying the nondegenerate a(1)' orbital was predicted to be the most stable state for both M = Mo and W. However, whereas M(3)O(9)(2-) was predicted to be less stable than M(3)O(9)(-), W(3)O(9)(2-) was predicted to be more stable than W(3)O(9)(-).  相似文献   

4.
Density functional theory (DFT) calculations have been used to investigate the d(3)d(3) bioctahedral complexes, MM'Cl(9)(5-), of the vanadium triad. Broken-symmetry calculations upon these species indicate that the V-containing complexes have optimized metal-metal separations of 3.4-3.5 A, corresponding to essentially localized magnetic electrons. The metal-metal separations in these weakly coupled dimers are elongated as a consequence of Coulombic repulsion, which profoundly influences (and destabilizes) the gas-phase structures for such dimers; nevertheless, the intermetallic interactions in the V-containing dimers involve significantly greater metal-metal bonding character than in the analogous Cr-containing dimers. These observations all show good agreement with existing experimental (solid state) results for the chloride-bridged, face-shared dimers V(2)Cl(9)(5-) and V(2)Cl(3)(thf)(6)(+). In contrast to the V-containing dimers, complexes featuring only Nb and Ta have much shorter intermetallic distances (approximately 2.4 A) consistent with d-electron delocalization and formal metal-metal triple bond formation; again, good agreement is found with available experimental data. Calculations on the complexes V(2)(mu-Cl)(3)(dme)(6)(+), Nb(2)(mu-dms)(3)Cl(6)(2-), and Ta(2)(mu-dms)(3)Cl(6)(2-), which are closely related to compounds for which crystallographic structural data exist, have been pursued and provide an insight into the intermetallic interactions in the experimentally characterized complexes. Analysis of the contributions from d-orbital overlap (E(ovlp)) stabilization, as well as spin polarization (exchange) stabilization of localized d electrons (E(spe)), has also been attempted for the MM'Cl(9)(5-) dimers. While E(ovlp) clearly dominates over E(spe) as a stabilizing factor in those dimers containing only Nb and Ta metal atoms, detailed assessment of the competition between E(ovlp) and E(spe) for V-containing dimers is obstructed by the instability of triply bonded V-containing dimers against Coulombic explosion. On the basis of the periodic trends in E(ovlp) versus E(spe), the V-triad dimers have a greater propensity for metal-metal bonding than do their Cr-triad or Mn-triad counterparts.  相似文献   

5.
The single crystal spectra of pure CsNiCl3, CsNiBr3, RbNiCl3, and [(CH3)4]NiCl3, and the single crystal spectrum of CsNiCl3 diluted in CsMgCl3 have been measured to 5°K. The spectra of the magnetically concentrated materials show a number of anomalously intense maxima. These are interpreted in terms of cooperative interactions.  相似文献   

6.
The catalytic system Ni(COD)2/BF3 · OEt2 was used to demonstrate the possibility of stabilizing Ni+ ions in toluene solutions without traditional organoelement ligands.  相似文献   

7.
The dithiosalicylidenediamine Ni II complexes [Ni(L)] (R=tBu, R'=CH2C(CH3)2CH2 1, R'=C6H4 2; R=H, R'=CH2C(CH3)2CH2 3, R'=C6H4 4) have been prepared by transmetallation of the tetrahedral complexes [Zn(L)] (R=tBu, R'=CH2C(CH3)2CH2 7, R'=C6H4 8; R=H, R'=CH2C(CH3)2CH2 9, R'=C6H4 10) formed by condensation of 2,4-di-R-thiosalicylaldehyde with diamines H2N-R'-NH2 in the presence of Zn II salts. The diamagnetic mononuclear complexes [Ni(L)] show a distorted square-planar N2S2 coordination environment and have been characterized by 1H- and 13C NMR and UV/Vis spectroscopies and by single-crystal X-ray crystallography. Cyclic voltammetry and coulombic measurements have established that complexes 1 and 2, incorporating tBu functionalities on the thiophenolate ligands, undergo reversible one-electron oxidation processes, whereas the analogous redox processes for complexes 3 and 4 are not reversible. The one-electron oxidized species, 1+ and 2+, can be generated quantitatively either electrochemically or chemically with 70 % HClO4. EPR and UV/Vis spectroscopic studies and supporting DFT calculations suggest that the SOMOs of 1+ and 2+ possess thiyl radical character, whereas those of 1(py)2 + and 2(py)2 + possess formal Ni III centers. Species 2+ dimerizes at low temperature, and an X-ray crystallographic determination of the dimer [(2)2](ClO4)2.2 CH2Cl2 confirms that this dimerization involves the formation of a S-S bond (S...S=2.202(5) A).  相似文献   

8.
The molecular and electronic structures of mixed-valence face-shared (Cr, Mo, W) d(2)d(3) and (Mn, Tc, Re) d(3)d(4) [M(2)Cl(9)](2-) dimers have been calculated by density functional methods in order to investigate metal-metal bonding in this series. The electronic structures of these systems have been analyzed using potential energy curves for the broken-symmetry and other spin states arising from the d(2)d(3) and d(3)d(4) coupling modes. In (d(2)d(3)) [Mo(2)Cl(9)](2-) and [W(2)Cl(9)](2-), the global minimum has been found to be a spin-doublet state characterized by delocalization of the metal-based electrons in a multiple metal-metal bond (with a formal bond order of 2.5). In contrast, weak coupling between the metal centers and electron localization are favored in (d(2)d(3)) [Cr(2)Cl(9)](2-), the global minimum for this species being a ferromagnetic S = 5/2 state with a relatively long Cr-Cr separation. The (d(3)d(4)) [Re(2)Cl(9)](2-) system also exhibits a global minimum corresponding to a metal-metal bonded spin-doublet state with a formal bond order of 2.5, reflecting the electron-hole equivalence between d(2)d(3) and d(3)d(4) configurations. Double minima behavior is predicted for (d(3)d(4)) [Tc(2)Cl(9)](2-) and [Mn(2)Cl(9)](2-) due to two energetically close low-lying states (these being S = 3/2 and S = 5/2 states for the former, and S = 5/2 and S = 7/2 states for the latter). A comparison of computational results for the d(2)d(2), d(2)d(3), and d(3)d(3) [W(2)Cl(9)](z-) series and the d(3)d(3), d(3)d(4), and d(4)d(4) [Re(2)Cl(9)](z-) series indicates that the observed trends in metal-metal distances can only be rationalized if changes in both the strength of sigma bonding and metal-metal bond order are taken into consideration. These two factors act conjointly in the W series but in opposition to one another in the Re series. In the case of the [Cr(2)Cl(9)](z-) and [Mn(2)Cl(9)](z-) dimers, the metal-metal bond lengths are significantly shorter for mixed-valence (d(2)d(3) or d(3)d(4)) than d(3)d(3) systems. This result is consistent with the fact that some degree of metal-metal bonding exists in the former (due to partial delocalization of a single sigma electron) but not in the latter (where all metal-based electrons are completely localized).  相似文献   

9.
Geometric constraints present in A2BO4 compounds with the tetragonal-T structure of K2NiF4 impose a strong pressure on the BOIIB bonds and a stretching of the AOIA bonds in the basal planes if the tolerance factor is t ? RAO√2 RBO < 1, where RAO and RBO are the sums of the AO and BO ionic radii. The tetragonal-T phase of La2NiO4 becomes monoclinic for Pr2NiO4, orthorhombic for La2CuO4, and tetragonal-T′ for Pr2CuO4. The atomic displacements in these distorted phases are discussed and rationalized in terms of the chemistry of the various compounds. The strong pressure on the BOIIB bonds produces itinerant σ1x2?y2 bands and a relative stabilization of localized dz2 orbitals. Magnetic susceptibility and transport data reveal an intersection of the Fermi energy with the d2z2 levels for half the copper ions in La2CuO4; this intersection is responsible for an intrinsic localized moment associated with a configuration fluctuation; below 200 K the localized moment smoothly vanishes with decreasing temperature as the d2z2 level becomes filled. In La2NiO4, the localized moments for half-filled dz2 orbitals induce strong correlations among the σ1x2?y2 electrons above Td ? 200 K; at lower temperatures the σ1x2?y2 electrons appear to contribute nothing to the magnetic susceptibility, which obeys a Curie-Weiss law giving a μeff corresponding to S = 12, but shows no magnetic order to lowest temperatures. These surprising results are verified by comparison with the mixed systems La2Ni1?xCuxO4 and La2?2xSr2xNi1?xTixO4. The onset of a charge-density wave below 200 K is proposed for both La2CuO4 and La2NiO4, but the atomic displacements would be short-range cooperative in mixed systems. The semiconductor-metallic transitions observed in several systems are found in many cases to obey the relation Ea ? kTmin, where ? = ?0exp(?EakT) and Tmin is the temperature of minimum resistivity ?. This relation is interpreted in terms of a diffusive charge-carrier mobility with Ea ? ΔHm ? kT at T = Tmin.  相似文献   

10.
11.
Both structure-directing effect and synergistic-directing effect of PW(9)O(34) fragments result in two poly(polyoxotungstate)s (poly(POT)s) of the Ni(24)-based tetramer with largest transition metal atoms among ring-shaped poly(POT) tetramers and the Ni(40)-based poly(POT) octamer with the highest number of Ni ions among all known poly(POT)s to date, respectively.  相似文献   

12.
13.
We have employed (2 + 1) resonance enhanced multiphoton ionization spectroscopy to investigate the 3d and 4s Rydberg states of the NO molecule when bound to the surface of Rg(x) clusters (Rg = rare gas). We observe that the spectra of the NO-Ar(x) species converge in appearance as x increases, and this is discussed in terms of two Rg atoms interacting with the NO+ core, with other Rg atoms being "outside" the Rydberg orbital. We show that the interaction of each of the Rg atoms with the NO is essentially independent for the NO-Rg2 complexes: both by comparing our spectra for Rydberg states of NO-Rg and NO-Rg2, and from the results of ab initio calculations on NO+ - Rg and NO+ - Rg2. In addition, we discuss the disappearance of some electronic bands upon complexation in terms of Franck-Condon factors that are very sensitive to the angular coordinate. We relate our results to those of the bulk by comparing to the previously reported electronic spectroscopy of NO in both Rg matrices and He nanodroplets.  相似文献   

14.
Reactions of ethylenediamine solutions of K4Bi5 with Ni(PPh3)2(CO)2 yielded four novel hetero-atomic Bi/Ni deltahedral clusters. Three of them, the 7-atom pentagonal bipyramidal [Bi3Ni4(CO)6]3-, the 8-atom dodecahedral [Bi4Ni4(CO)6]2-, and the Ni-centered or empty 12-atom icosahedral [Nix@[Bi6Ni6(CO)8]4-, are closo-species according to both electron count and shape. The centered icosahedral cluster resembles packing in intermetallic compounds and belongs to the emerging class of intermetalloid clusters. The shape of the fourth cluster, [Bi3Ni6(CO)9]3-, can be derived from the icosahedral Ni-centered [Ni@[Bi6Ni6(CO)8]4- by removal of three Bi- and one Ni-atoms of two neighboring triangular faces. The clusters were structurally characterized by single-crystal X-ray diffraction in compounds with potassium cations sequestered by 2,2,2-crypt or 18-crown-6 ether. They were also characterized in solution by electrospray mass spectrometry.  相似文献   

15.
The low-temperature molar heat capacity of crystalline Ni9(btz)12(DMA)6(NO3)6 (1) (btz = benzotriazolate; DMA = N,N′-dimethylacetamide) was measured by temperature-modulated differential scanning calorimetry for the first time. The thermodynamic parameters such as entropy and enthalpy relative to reference temperature 298.15 K were obtained based on the above molar heat capacity data. The compound was synthesized by solvothermal method and characterized by powder X-ray diffraction and FT-IR spectra. Moreover, the thermal stability and the decomposition mechanism of Ni9(btz)12(DMA)6(NO3)6 were investigated by thermogravimetry (TG) analysis under air atmosphere from 300 to 873 K. The experimental results through TG measurement demonstrate that the compound has a two-stage mass loss in air flow.  相似文献   

16.
The compound [Ni(PPh(3))(3)][BF(4)] x BF(3) x OEt(2) was isolated in crystalline form from the olefin oligomerization catalyst system Ni(PPh(3))(4)/BF(3) x OEt(2) and structurally characterized by X-ray diffraction. The influence of vibronic coupling on the EPR parameters of three-coordinate metal complexes with a 3d(9) electronic configuration was investigated within the framework of ligand field theory. Analytical expressions for g-tensor components and isotropic hyperfine coupling constants with ligand nuclei were obtained using first-order perturbation theory. It has been shown that the account of the vibronic interaction in the excited state predicts the existence of three-axial anisotropy of the g-tensor even at the level of first-order perturbation theory; two axes of the g-tensor located in a plane of three-coordinate structure can rotate about the main z axis when a compound is distorted by motion of ligands. It has been shown that in three points of the potential energy surface minimum, for which linear and quadric constants of the vibronic interactions have an identical signs, the HFS isotropic constant from one ligand is larger than HFS constants from the other two; for different vibronic constant signs the ratio between HFS constants varies on opposite. This theoretical researches are in the quality consent with experimental data for a three-coordinate Ni(I) and Cu(II) flat complexes.  相似文献   

17.
Voltammetry of immobilised microcrystalline perovskites La(Ni,Cr)O3 and La(Ni,Fe)O3 revealed that these oxides yield three types of reactions in acidic aqueous solutions (0.1 M HClO4): irreversible oxidative dissolution of Cr-rich oxides, irreversible reductive dissolution of Fe-rich oxides, and a quasi-reversible reaction most likely related to alteration of the valencies of Cr, Fe and/or Ni in the solid state. The samples of La(Cr1− x Ni x )O3 with x = 0.3 and 0.5 especially showed limited cycling stability that is particularly surprising in the very strongly acidic solution. Received: 4 January 1999 / Accepted: 16 February 1999  相似文献   

18.
19.
[Ag(UO(2))(3) (OAc)(9)][Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)] (, OAc = CH(3)COO(-)) crystallized from an ethanol solution and its structure was determined by IR spectroscopy, elemental analysis, (1)H NMR, (13)C NMR and X-ray crystallography; it is composed of [Zn(H(2)O)(4)(CH(3)CH(2)OH)(2)](2+) cations and [Ag(UO(2))(3)(OAc)(9)](2-) anions in which triuranyl [(UO(2))(OAc)(3)](3) clusters are linked by the Ag ion.  相似文献   

20.
Trans-1-(3-vinyl-9-carbazolyl)-2-(9-carbazolyl)cyclobutane(I) was synthesized. Homopolymerization of I and copolymerization with 9-ethyl-3-vinylcarbazole(II) were conducted cationically. It was found that I polymerized to high molecular weight polymers (< 105) with good yields, although its polymerizability was lower than that of II. Copolymer composition was determined by gel permeation chromatology (GPC) analysis, based on the remaining monomer ratio. Fluorescence spectroscopy indicated that poly(I) did not form excimer. Excimer emission gradually appeared with increasing II content in poly(I-co-II) to the homopolymer of II. This difference between poly(I) and poly(II) was attributed to the crowded and sterically distorted chromophore assemblies in poly(I). 1H- and 13C-NMR spectroscopy of cyclobutane groups in poly(I) compared with that in the monomer model compound supported the conclusion derived from fluorescence study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号