首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
血流速度的精确测量对于研究心血管疾病和动脉粥样硬化斑块的形成至关重要,传统的彩色多普勒方法局限于获得沿超声束的速度分量,难以描绘复杂的血流运动.本文提出了一种多角度复合的超声多普勒方法,结合多角度复合技术来提升速度估算的准确度.该方法可以获取复杂血管内较为精确的二维速度矢量,实现血管内动态矢量血流成像.仿真结果表明,多角度复合有效地减小了速度估算的误差,提升图像的质量.颈动脉分叉仿体成像实验表明,该方法可以获得较为清楚的血管内速度矢量图像.定量分析结果表明5个角度复合方案能够准确估算血管内流量.本文提出的多角度复合的矢量多普勒具有可视化复杂血流和计算血流动力学参数的能力,在矢量血流成像方法中有重要潜力.  相似文献   

2.
三维超快成像是超声技术发展的重要方向.基于二维全采样阵列的传统三维成像方法需要较多成像阵元和采样通道,其紧密的阵元排列设计也客观上限制了阵列孔径大小和成像分辨率.行列寻址(row-column addressing, RCA)探头以行列检索的方式将通道数自N×N减少为N+N,从而极大地降低了阵列的硬件实现成本.本文仿真了中心频率为6MHz的128行+128列的RCA阵列,结合多角度平面波正交复合成像方法,通过延时叠加(delay and sum, DAS)波束合成、基于特征值分解(singular value decomposition, SVD)的杂波滤除和自相关多普勒速度求解算法,实现了血流仿体的多普勒成像,并分析了不同复合角度序列对成像效果的影响.定量分析表明,当角度数从5个增至33个时,–6 dB分辨率从0.986 mm提升至0.493 mm;当复合角度为17个时,功率多普勒图像的SNR可达30 dB,彩色多普勒沿直径方向的速度分布和真实值的平均误差约为26.0%.以上结果表明,基于RCA阵列的三维成像技术能够获得三维B-mode、功率多普勒和彩色多普勒图像,增大复合平面波角度...  相似文献   

3.
陶仲裔 《应用声学》1985,4(1):45-46
根据医学仪器的发展,超声多普勒血流测量技术正广泛地应用于超声诊断中.但由于声束和血流间夹角的影响,引起速度测量的误差. 江苏省太仓县超声仪器厂生产的T-2A型血流速度计,采用了双超声束多普勒效应,消除了测量时因θ角引起的误差,能定量测定血流速度和血流方向,是一项无损伤诊断心血管疾病的技术.目前国内尚无同类产品. T-2A型血流速度计技术性能 发射频率为4.75  相似文献   

4.
该文介绍了传统超声多普勒存在的角度依赖、混叠等主要技术缺陷,阐述了当前几项主流的血管超声血流成像的高级功能,并结合临床应用给出了一个综述性的总结。描述了超声向量血流成像的技术特点及其发展历程,重点介绍了V Flow技术及其临床应用结果,并同时对血管应用相关的其他高级功能进行了概述。传统超声多普勒结合血管超声的高级功能可为血管疾病的临床诊断提供一系列更有针对性的解决方案。  相似文献   

5.
超声粒子图像测速技术及应用   总被引:1,自引:0,他引:1  
心血管疾病的产生与动脉血流的流动状况密切相关。然而,目前普遍应用的超声多普勒成像技术不能精确测量复杂血流流场信息。本文提出了一种基于超声造影微泡的超声全流场粒子图像测速技术,能够获得多维流速速度信息,且不依赖于声束与速度向量之间的夹角。本文首先着重阐述了超声全流场粒子测速技术的基本原理以及系统组成,并对直管流和旋转流场流体动力学特性进行了实验测试研究,实验结果表明本技术能够测量全流场速度,并可作为表征复杂血流流场的有力手段。   相似文献   

6.
微小血管及其血流实时成像对监测生物体血氧代谢等具有重要意义.在无微泡造影剂的情况下,传统超声多普勒技术仍较难实现高信噪比的微小血管成像.本研究提出了一种无造影剂增强的超快超声脊髓微血管成像方法.本研究从基于多角度复合平面波的高帧频成像技术出发,提出基于特征值分解的频率-幅值双阈值滤波法,从而将脊髓组织信号和微血流信号分离,可实现脊髓内微血流的动态成像.在体成像实验结果表明,无超声造影剂时,超快超声多普勒成像技术仍可获得较为清晰的大鼠脊髓内微血流的实时图像,并能够清晰地呈现脊髓受损所致的微血流缺失状况.定量分析结果表明,增大复合平面波角度数可有效提高图像的信噪比.综上,超快超声多普勒成像技术有潜力被应用于脊髓内微血管成像及功能实时监测与动态评价,相关结果可为脊髓功能成像方法的研究提供借鉴.  相似文献   

7.
三维超声微血管成像可直观呈现血流信息,对于脑血管疾病诊断和治疗具有重要意义。本文旨在将超快超声成像技术、超快超声功率多普勒技术和机械扫描相结合,实现脑血管三维成像和脑缺血区域评价。通过工程实现,完成了可同步控制微型线性位移平台移动和超声阵列超快发射、高速采集与压缩存储的三维扫描数据采集序列与系统。利用GPU并行运算,高效实现了超声图像波束合成方法,对原始射频超声数据完成重建。进而,基于SVD杂波滤除技术,从重建三维超声数据中提取了脑部的动态小血管信号,并获得了各切面的功率多普勒成像和冠状面彩色多普勒超声小血管成像。最后,采用体素方法对三维脑血管进行重建。大鼠在体实验结果表明,该成像系统可用于三维脑血管网络在体成像,以及脑血管损伤区域定位与量化评价。本工作对脑病检测技术发展与诊断方法研究具有一定的借鉴意义。此外,相关检测系统和成像算法具有一定普适性,对其他富含微血流血管的组织检测也有一定的参考价值。  相似文献   

8.
虽然脉冲多普勒系统测量血流速度时,能够确定距离,但可测速度范围受频率混淆限制,同时多普勒信号的信噪比差.连续波多普勒系统提供了较高的多普勒信号的信噪比,并没有可测速度限制,但无法提供距离信息.线性调频及正弦调频连续波测量系统,能够提供拥有距离信息的高信噪比多普勒信号,同时杂波功率低,但由于多普勒信号频谱具有周期性,存在一定的距离模糊.针对存在的问题,提出基于混沌调频连续波的超声多普勒血流速度测量方法,它不仅具有较高的信噪比,而且由于多普勒信号频谱无周期性,因此不存在距离模糊.经过原理分析及仿真实验,验证了混沌调频连续波的有效性.  相似文献   

9.
准确的脑血流成像对脑功能监测和脑疾病的快速诊断具有重要意义,然而颅骨对超声传播的影响会导致成像质量下降、速度或位移估计不准确等问题.论文采用平面波相干复合结合散斑跟踪方法进行颅内散射目标成像和速度估计,以实现脑血流速度矢量检测;针对颅骨存在导致的超声相位畸变,利用数值仿真和体模实验研究了其对成像及散斑跟踪效果的影响,并...  相似文献   

10.
超声/光声双模态成像技术因其同时兼具超声的高分辨率结构成像和光声的高对比度功能成像优势,极大地推动了光声成像技术的临床应用推广.传统超声/光声双模态成像技术多基于超声成像所用阵列探头同时收集光声信号,系统结构紧凑且无需图像配准,操作便捷.但该类设备使用阵列探头和多通道数据采集,使得其成本较高;且成像结果易受通道一致性差异影响.本文提出了一种基于声学扫描振镜的超声/光声双模态成像技术,该技术采用单个超声换能器结合一维声学扫描振镜进行快速声束扫描,实现超声/光声双模态成像,是一种小型化、低成本的双模态快速成像技术.本文开展了系列仿体和活体成像研究,实验结果表明:系统有效成像范围为15.6 mm,超声和光声成像B扫描速度分别为1.0 s–1和0.1 s–1 (光声成像速度主要受制于脉冲激光器重复频率).基于本文所提技术研究,有助于进一步推动超声/光声双模态成像技术的临床转化和普及;也为基于超声信号检测的多模态成像技术提供了一种低成本、小型化和快速声信号检测的参考方案.  相似文献   

11.
光学多普勒层析三维矢量测速方法研究   总被引:1,自引:0,他引:1  
光学多普勒层析术(ODT)是一种高分辨、非侵入的生物医学成像手段,能同时得到组织的结构信息和组织内血管的流速信息.提出了一种新型的基于相位分辨技术的ODT三维矢量测速方法.在ODT系统样品臂的准直镜和聚焦透镜之间加入窄带相位片,形成三个不同的相位延迟,通过计算多普勒频移和不同相位延迟下的多普勒展宽,可得到毛细管内的三维矢量流场分布.对已知浓度的聚苯乙烯溶液进行了一系列不同角度和不同流速的实验,结果证明这种新型的ODT矢量测速方法可以较精确的实现三维矢量流速的测量.  相似文献   

12.
Aoudi W  Liebgott H  Needles A  Yang V  Foster FS  Vray D 《Ultrasonics》2006,44(Z1):e135-e140
This article proposes to estimate slow blood flow with high frequency ultrasound imaging. The proposed technique combines 2 methods. First, a statistical method, called Speckle Flow Imaging (SFI) based on the analysis of changes in the speckle pattern along time, gives an index directly related to the total velocity vector. Secondly, a block matching approach estimates the in-plane velocity components. Results on calibrated flow sequences of blood mimicking fluid have shown good agreement with the statistical model. The quantification of flow is achieved with pulsed flow and is also angle independent when the flow is perpendicular to the ultrasound beam. Speckle Tracking has been evaluated on the same data and has shown good estimation of the in-plane velocity vector when the component of velocity perpendicular to the imaging plane is inferior to 1mm/s. The results of these two methods permit the evaluation of the total 3D velocity field and the orthogonal velocity component relative to the imaging plane. This allows the quantification of blood flow (volumetric per time unit across the sequence).  相似文献   

13.
Synthetic aperture ultrasound imaging   总被引:1,自引:0,他引:1  
The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The paper demonstrates the many benefits of SA imaging. Due to the complete data set, it is possible to have both dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using short imaging sequences, whereby both the correct velocity magnitude and angle can be estimated. A number of examples of both phantom and in vivo SA images will be presented measured by the experimental ultrasound scanner RASMUS to demonstrate the many benefits of SA imaging.  相似文献   

14.
Centreline blood velocity and exterior wall motion were measured in the descending aorta of humans using an oesophageal probe, a pulsed ultrasound Doppler velocity meter and an ultrasonic echo tracking system. The development of a method for easily measuring haemodynamics in the thoracic region using an oesophageal probe will provide an essentially non-invasive method for the assessment of cardiac function and the nature of blood vessels in that region. Detailed anatomical studies of the thorax were conducted by cross-sectioning of the thorax of a cadaver. Blood velocity waveforms were recorded from the descending aorta both during rest and exercise. In one volunteer, the peak centreline velocity increased from a resting value of approximately 30 cm s-1 to an exercise value of approximately 50 cm s-1. Vessel diameter waveforms similar to those for pressure were also recorded showing diameter changes of 1.8 mm. The accuracy and resolution of the technique would be improved by multicrystal probes and multigate ultrasonic flowmeters allowing for accurate calculation of the Doppler angle, imaging of vascular flow regions, and measurement of pulse wave velocity.  相似文献   

15.
The objective of this paper is to validate angle independent vector velocity methods for blood velocity estimation. Conventional Doppler ultrasound (US) only estimates the blood velocity along the US beam direction where the estimate is angle corrected assuming laminar flow parallel to vessel boundaries. This results in incorrect blood velocity estimates, when angle of insonation approaches 90° or when blood flow is non-laminar. Three angle independent vector velocity methods are evaluated in this paper: directional beamforming (DB), synthetic aperture flow imaging (STA) and transverse oscillation (TO). The performances of the three methods were investigated by measuring the stroke volume in the right common carotid artery of 11 healthy volunteers with magnetic resonance phase contrast angiography (MRA) as reference. The correlation with confidence intervals (CI) between the three vector velocity methods and MRA were: DB vs. MRA: R = 0.84 (p < 0.01, 95% CI: 0.49–0.96); STA vs. MRA: R = 0.71 (p < 0.05, 95% CI: 0.19–0.92) and TO vs. MRA: R = 0.91 (p < 0.01, 95% CI: 0.69–0.98). No significant differences were observed for any of the three comparisons (DB vs. MRA: p = 0.65; STA vs. MRA: p = 0.24; TO vs. MRA: p = 0.36). Bland–Altman plots were additionally constructed, and mean differences with limits of agreements (LoA) for the three comparisons were: DB vs. MRA = 0.17 ml (95% CI: −0.61–0.95) with LoA = −2.11–2.44 ml; STA vs. MRA = −0.55 ml (95% CI: −1.54–0.43) with LoA = −3.42–2.32 ml; TO vs. MRA = 0.24 ml (95% CI: −0.32–0.81) with LoA = −1.41–1.90 ml. According to the results, reliable volume flow estimates can be obtained with all three methods. The three US vector velocity techniques can yield quantitative insight into flow dynamics and visualize complex flow patterns, which potentially can give the clinician a novel tool for cardiovascular disease assessment.  相似文献   

16.
Li X  Ko TH  Fujimoto JG 《Optics letters》2001,26(23):1906-1908
We describe a miniature fiber-optic Doppler imaging catheter for integrated functional and structural optical coherence tomography (OCT) imaging. The Doppler catheter can map blood flow within a vessel as well as image vessel wall structures. A prototype Doppler catheter has been developed and demonstrated for measuring the intraluminal velocity profile in a vessel phantom (conduit). A simple mathematical model is demonstrated to estimate the total flow rate. This estimation technique also enables the spatial range of flow measurements to be extended by approximately two times the normal OCT image-penetration depth. The Doppler OCT catheter could be a powerful device for cardiovascular imaging.  相似文献   

17.
Maximum blood velocity estimates are frequently required in diagnostic applications, including carotid stenosis evaluation, arteriovenous fistula inspection, and maternal-fetal examinations. However, the currently used methods for ultrasound measurements are inaccurate and often rely on applying heuristic thresholds to a Doppler power spectrum. A new method that uses a mathematical model to predict the correct threshold that should be used for maximum velocity measurements has recently been introduced. Although it is a valuable and deterministic tool, this method is limited to parabolic flows insonated by uniform pressure fields. In this work, a more generalized technique that overcomes such limitations is presented. The new approach, which uses an extended Doppler spectrum model, has been implemented in an experimental set-up based on a linear array probe that transmits defocused steered waves. The improved model has been validated by Field II simulations and phantom experiments on tubes with diameters between 2 mm and 8 mm. Using the spectral threshold suggested by the new model significantly higher accuracy estimates of the peak velocity can be achieved than are now clinically attained, including for narrow beams and non-parabolic velocity profiles. In particular, an accuracy of +1.2 ± 2.5 cm/s has been obtained in phantom measurements for velocities ranging from 20 to 80 cm/s. This result represents an improvement that can significantly affect the way maximum blood velocity is investigated today.  相似文献   

18.
The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal–noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号