首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
胡航溢  许龙  郑伟成  罗凯 《应用声学》2024,43(1):198-203
超声波雾化技术由于其良好的雾化效果获得了广泛关注,具有极大的研究价值和应用前景。但是在超声雾化的过程中,由于换能器的温度变化、刚度变化以及在水中的负载变化等因素,会产生谐振频率漂移的现象。当工作频率偏移谐振频率时,将造成换能器的工作效率降低和元器件损坏等问题。针对此问题,设计了基于改进粒子群算法优化PID参数的超声雾化电源频率跟踪算法,并对该算法进行频率跟踪的仿真验证和实验对比,在频率跟踪上实现了更好的效果,使换能器能够稳定工作在谐振状态,提高了电源的利用率。  相似文献   

2.
为了保证航空器运行过程中,天线能够实时的对准行航空器,保证通讯的正常,本文设计了一种基于STM32的雷达信号跟踪控制系统。使用STM32F407IG控制芯片作为信号跟踪控制系统的处理器,通过处理来自接收机的方位差电压ΔA信号和俯仰差电压ΔE信号,控制步进电机的转动,实现对天线运动状态的控制,保证天线能够实时对准航空器。STM32F407IG自带的定时器提供了PWM脉冲功能,可以通过给步进电机驱动器发送脉冲命令来实现对电机的运动控制。为了保证运动的可靠性,系统使用了旋转变压器形成闭环控制。  相似文献   

3.
为了提高超声波电源的输出功率,该文提出了一种基于级联9电平技术的大功率超声波电源.电源逆变部分由两个H桥单元级联组成,经过一定的控制策略实现输出电压为9电平波形,可以显著提高超声波电源的输出功率,改善输出电压的波形质量.提出一种电压差法跟踪换能器的谐振频率,只需采样3个电压,根据3个电压之间的数值差调节输出频率.通过分...  相似文献   

4.
大功率超声用有源频率自动跟踪系统   总被引:4,自引:0,他引:4       下载免费PDF全文
在超声加工中,大振幅换能振子的频率漂移是一个多途径在解决的问题。本文介绍的频率跟踪电路利用了运算放大器的函数运算特性,对换能器的传输函数进行补偿,较容易地实现了一个频段上的频率跟踪。  相似文献   

5.
超声波电源系统中电压电流相位差测量精度影响着换能器振幅稳定性以及系统工作效率。目前基于异或门原理,采用分立数字芯片实现鉴相的方案,存在信号调理电路复杂、线性范围小、精度低等问题。为提高电压电流鉴相精度,该文提出了一种数字鉴相器设计。该数字鉴相器采用正交解调原理鉴相,并使用坐标旋转数字算法在FPGA上实现了鉴相器的设计,简化了电路,减少了杂散信号的干扰。经过Modelsim仿真测试表明在30 dB信噪比条件下鉴相误差为0.21°,最后经过实验测试,数字鉴相器鉴相最大误差绝对值为0.256°,提高了测量精度。  相似文献   

6.
与超声塑料焊接相比,超声金属焊接负载重且变化剧烈,容易导致换能器出现无阻性点状态或者频率误跟踪。现有的频率跟踪方法往往只能在换能器有阻性点的状态下正常工作,在出现误跟踪时也无法自动复位。针对上述问题,本文基于梅森等效电路,推导出一种能够同时适配于谐振频率与反谐振频率,能够自行判断是否误跟踪频率跟踪算法。当换能器处于无阻性点状态时,算法将自动把跟踪目标变为相位差最小点,实现全状态频率跟踪。算法利用三个不同频率及其发波时换能器的电压电流相位进行计算,以此算出理想的频率跟踪步长和方向。最后通过MATLAB对算法进行仿真,验证算法在目标频率发生非线性变化时频率跟踪的效果。结果表明,新算法能够实现误跟踪的自复位和全状态频率跟踪,同时能在启动后10ms以内完成频率跟踪,跟踪精度达0.1hz。  相似文献   

7.
谢成祥  张健  邓志良 《应用声学》2006,25(4):201-205
对超声波冲击以提高焊接接头疲劳强度的装置进行了研究,研制出一台可用于实际冲击处理的样机。该样机以单片机为核心,采用自适应带通滤波器提取超声换能器工作的基波信号,在此基础上获得电流和电压的相位差,根据相位差用模糊控制方法来实现自动频率跟踪;通过电流控制执行机构的输出端振幅,使之恒定不变,对超声冲击处理的质量进行控制。该装置能够适应超声冲击这种负载变化十分剧烈的场合,并可实现准确的频率跟踪和保证冲击处理的质量及效率。  相似文献   

8.
曾素琼 《物理实验》2002,22(4):18-21
对超声波换能器频率测试系统进行了探讨,并在此基础上提出了改装设想,分析了所研究的简易超声波换能器频率测试仪的电路原理及实验结果。  相似文献   

9.
郭金妹  张建荣 《应用声学》2015,23(8):2726-2729
为了进一步提高消防设备电源监控系统的探测准确性及响应时间,在传统监控系统的基础上,利用现代电力电子技术和先进智能算法,设计了一种基于STM32F的消防设备电源监控系统;系统监控传感器采集消防设备电源的电压电流及开入开出信号,通过高性能微处理器利用RMS方法、阈值分析等方法对数据进行初步分析,并采用S变换算法对信号进行特征提取进一步判断和识别故障信号;监控传感器处理数据后通过RS485将设备电源状态传至监控主机中集中监控,对外提供Modbus-RTU通信协议,方便与其它系统的数据交换,并进行显示和报警等操作;试验结果表明,基于STM32F的消防设备电源监控系统检测电压电流故障精准度高达99.18%,响应时间极大满足国标要求,有效确保消防设备电源的正常运行。  相似文献   

10.
基于自寻最优模糊控制的自动频率跟踪   总被引:4,自引:1,他引:4       下载免费PDF全文
曹群  周兆英  罗晓宁  张毓笠 《应用声学》2003,22(1):22-25,47
文章概述了在功率超中自动频率跟踪的基本原理,在分析自寻最优控制的方法和模糊控制方法的基础上,提出了一种自寻最优模糊控制方法,利用它来实现自动频跟踪,在超声吸引器上取得良好的应用效果。  相似文献   

11.
为改善步进电机堵转、失步、超步等问题,提高步进精度,使步进电机能够快速准确定位,提出基于STM32F4微控制器的步进电机控制系统设计。通过改变PWM输出定时器的预分频值控制电机转速,直线阶梯形升降速算法实现调速;采用DMA方式控制电机脉冲数量,实现位置精确控制。实验以及实际应用情况表明,阶梯形升降速算法以及DMA方式位置控制算法能够满足一般要求,系统误差为±0.01度。系统精确度高、性能可靠、扩展性强,具有较高的应用价值。  相似文献   

12.
大气的质量直接关系到人们的生存环境,衡量大气污染的程度和对身体健康造成的伤害,都离不开对大气的检测。如何进行检测,用什么方法来评判,本文提出一种方法来实时检测大气雾霾的状况,尤其是PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶。大气雾霾监测系统利用雾霾检测器和GPRS传导,将所在地雾霾情况实时监测传输给手机APP终端,手机接收之后将数据整合显示给使用者,达到雾霾监测和提前应对恶劣天气的作用。  相似文献   

13.
佟为明  佟春天  金显吉 《强激光与粒子束》2019,31(3):035002-1-035002-7
检测负载电流信号特征是判断低压配电线路中是否发生电弧故障的有效方法之一。依据国家标准GB/T 31143-2014《电弧故障保护电器(AFDD)的一般要求》,搭建模拟串联故障电弧实验平台,研究故障电弧发生时电流波形的特征,并采用db4小波函数作为小波基函数,对降噪后的电流波形进行小波分解重构,提取小波高频分量,计算小波高频分量的周期方差值,将周期方差值作为主要特征值来进行电弧故障检测;为了在硬件上验证该检测算法的可行性和有效性,将电弧故障检测算法移植到STM32平台,设计了基于STM32的故障电弧检测装置,该装置可以实现电流信号采集、数据处理和串联电弧故障检测识别功能。在以阻性负载、LED灯、吸尘器和微波炉为屏蔽负载的实验结果表明,该装置能够检测出串联电弧故障,且可靠性高,不会在没有产生故障电弧的情况下产生误判。  相似文献   

14.
传统人防警报系统一般采用单一途径触发方式,实时性和可靠性易受限制,据此设计了多种远程方式控制警报的终端,采用STM32作为主控芯片,外围集成包括移动通讯、固话、有线以太网络三种技术途径触发多种警报,三种途径的仲裁采用先到先触发的兼容方式,并给出了终端的架构及内部设计运行原理,充分发挥了不同网络在不同环境下的优势,保障了不期灾害发生时警报的实时快速预警,同时对状态信息进行反馈,经实际使用测试,系统稳定,实时,可靠性强,为破坏性灾害发生时的成功预警提供了一种可靠方法。  相似文献   

15.
为了提高时栅位移传感器的测量精度及分辨率,提出了一种基于STM32F4的时栅位移传感器信号处理系统。系统包括硬件电路和软件设计,运用STM32F4处理器产生的高频时钟脉冲插补感应信号和参考信号的相位差,实现了相位检测。经实验验证,采用系统后,时栅位移传感器的角度误差峰峰值为2.4",实现了高精度、高分辨率的时栅角位移测量。  相似文献   

16.
物联网的大规模形成和高速发展,使得基于以太网通信的嵌入式系统开发成为物联网应用的一个实际课题。本论文设计了一种以STM32F407作为主处理器的以太网通信模块;利用32位闪存微控制器STM32F407与以太网模块CH395实现串口通信;采用CH395控制芯片内置的TCP/IP协议栈与上位机LabVIEW客户端建立数据通信,并实时发送测试数据进行实验研究。实测结果表明:基于STM32F407的以太网通信嵌入式系统工作稳定,数据传输可靠,能够满足系统设计需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号