首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The efficiency of semi-dry electrophoretic transfer after sodium dodecyl sulfate (SDS)-electrophoresis using PhastGel media was investigated in a model system using three isotope labelled proteins. To give a full picture of the blotting process the amount of protein present in the gel, membranes, and filter papers was determined after different transfer times. The influence of the transfer buffer, commonly used additives such as methanol and SDS, and several different immobilizing matrices was investigated. Soybean trypsin inhibitor, bovine serum albumin, and ferritin were used as model proteins to study the effect of size on transfer efficiency. Basically, all three stages of the blotting process decide the result; the elution of protein from the gel, the immobilization of protein to the membrane, and the loss of material from the membrane during transfer. A theoretical explanation for the observed poor binding to a second membrane is discussed. Our results show that the buffer composition has little influence on the efficiency of transfer from the gel, but can be significant to the binding capacity of the membrane. In all experiments performed, there was never one moment during the transfer when all protein was eluted from the gel and simultaneously still bound to the membrane. The highest recovery in the membrane was obtained at different time intervals for different proteins. This indicates that quantitative transfer procedures cannot be generalized. However, obtaining an optimal method for reliable quantification of a specific protein or group of proteins is possible. For general protein staining of nitrocellulose and polyvinylidene difluoride membranes, a highly sensitive silver staining method requiring only 15 min has been used.  相似文献   

2.
In‐gel digestion of gel‐separated proteins is a major route to assist in proteomics‐based biological discovery, which, however, is often embarrassed by its inherent limitations such as the low digestion efficiency and the low recovery of proteolytic peptides. For overcoming these limitations, many efforts have been directed at developing alternative methods to avoid the in‐digestion. Here, we present a new method for efficient protein digestion and tryptic peptide recovery, which involved electroblotting gel‐separated proteins onto a PVDF membrane, excising the PVDF bands containing protein of interest, and dissolving the bands with pure DMF (≥99.8%). Before tryptic digestion, NH4HCO3 buffer was added to moderately adjust the DMF concentration (to 40%) in order for trypsin to exert its activity. Experimental results using protein standards showed that, due to actions of DMF in dissolving PVDF membrane and the membrane‐bound substances, the proteins were virtually in‐solution digested in DMF‐containing buffer. This protocol allowed more efficient digestion and peptide recovery, thereby increasing the sequence coverage and the confidence of protein identification. The comparative study using rat hippocampal membrane‐enriched sample showed that the method was superior to the reported on‐membrane tryptic digestion for further protein identification, including low abundant and/or highly hydrophobic membrane proteins.  相似文献   

3.
A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual introduction of membrane pieces into the graphite furnace. The proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to a polyvinylidene difluoride (PVDF) membrane by semi-dry electroblotting. After staining the membrane, the protein bands were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well as selenoprotein standard were applied to the membrane. A characteristic mass of 54 +/- 4 pg/0.0044 s was obtained for the selenoprotein standard. Protein transfer from polyacrylamide gel to the membrane was quantitative and no interferences were introduced. The method was used for identification of selenoprotein P after enrichment of the protein from human plasma.  相似文献   

4.
This article describes a method for electroblotting peptides and small proteins (< 100 kDa) from tricine gels onto a PVDF membrane. The major potential problem with these types of procedures is that proteins tend to stay in the gel under conditions where peptides are effectively eluted. The suggested protocol allows the complete transfer and binding of proteins and peptides in the range of 2–97 kDa.  相似文献   

5.
A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual introduction of membrane pieces into the graphite furnace. The proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to a polyvinylidene difluoride (PVDF) membrane by semi-dry electroblotting. After staining the membrane, the protein bands were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2– 10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well as selenoprotein standard were applied to the membrane. A characteristic mass of 54 ± 4 pg/0.0044 s was obtained for the selenoprotein standard. Protein transfer from polyacrylamide gel to the membrane was quantitative and no interferences were introduced. The method was used for identification of selenoprotein P after enrichment of the protein from human plasma. Received: 28 June 1999 / Revised: 14 September 1999 / Accepted: 16 September 1999  相似文献   

6.
SYPRO Tangerine stain is an environmentally benign alternative to conventional protein stains that does not require solvents such as methanol or acetic acid for effective protein visualization. Instead, proteins can be stained in a wide range of buffers, including phosphate-buffered saline or simply 150 mM NaCl using an easy, one-step procedure that does not require destaining. Stained proteins can be excited by ultraviolet light of about 300 nm or with visible light of about 490 nm. The fluorescence emission maximum of the dye is approximately 640 nm. Noncovalent binding of SYPRO Tangerine dye is mediated by sodium dodecyl sulfate (SDS) and to a lesser extent by hydrophobic amino acid residues in proteins. This is in stark contrast to acidic silver nitrate staining, which interacts predominantly with lysine residues or Coomassie Blue R, which in turn interacts primarily with arginine and lysine residues. The sensitivity of SYPRO Tangerine stain is similar to that of the SYPRO Red and SYPRO Orange stains - about 4-10 ng per protein band. This detection sensitivity is comparable to colloidal Coomassie blue staining and rapid silver staining procedures. Since proteins stained with SYPRO Tangerine dye are not fixed, they can easily be eluted from gels or utilized in zymographic assays, provided that SDS does not inactivate the protein of interest. This is demonstrated with in-gel detection of rabbit liver esterase activity using alpha-naphthyl acetate and Fast Blue BB dye as well as Escherichia coli beta-glucuronidase activity using ELF-97 beta-D-glucuronide. The dye is also suitable for staining proteins in gels prior to their transfer to membranes by electroblotting. Gentle staining conditions are expected to improve protein recovery after electroelution and to reduce the potential for artifactual protein modifications such as the alkylation of lysine and esterification of glutamate residues, which complicate interpretation of peptide fragment profiles generated by mass spectrometry.  相似文献   

7.
Daban JR 《Electrophoresis》2001,22(5):874-880
The fluorescent hydrophobic dye Nile red allows the rapid, sensitive, and general staining of proteins in sodium dodecyl sulfate (SDS)-polyacrylamide gels. Nile red staining does not preclude further electroblotting of protein bands onto polyvinylidene difluoride (PVDF) membranes. The resulting Western blot can be stained with the covalent fluorescent dye 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) using a simple procedure. MDPF staining allows further N-terminal microsequencing and immunodetection of specific bands. This review considers the physicochemical, structural, and analytical studies that have led to the development of Nile red and MDPF staining methods. The usefulness of these procedures is discussed in comparison to other currently available fluorescent and nonfluorescent protein detection methods.  相似文献   

8.
Same major improvements in proteome analysis of cytosolic and membrane proteins by two-dimensional mapping are here reported. A much improved transfer of proteins from the first to the second dimensional sodium dodecyl sulfate (SDS)-gel is obtained by simply diluting the gel matrix, normally composed of 4%T polyacrylamide in all commercially available Immobiline strips down to as low as 3%T. In the analysis of total lysates of platelets, this augmented transfer has been evaluated as being 2-3 times higher than in standard 4%T gels. A second major improvement, in the case of analysis of membrane protein preparations, has been demonstrated to consist in a delipidation step in a tertiary solvent mixture composed of tri-n-butyl phosphate:acetone:methanol in a 1:12:1 ratio. By adopting this protocol, large amounts of spectrins (240-220 kDa, filamentous proteins of the red blood cell membranes) could be transferred vs. essentially none when delipidation was omitted. The present report also confirms the importance of a reduction and alkylation step of the protein sample prior to all electrophoretic steps, including focusing in the Immobiline gel, as recently reported by Herbert et al.  相似文献   

9.
Cooper JW  Gao J  Lee CS 《Electrophoresis》2004,25(9):1379-1385
An electronic protein transfer technique is described for achieving the rapid and efficient recovery of sodium dodecyl sulfate (SDS)-protein complexes from polyacrylamide gels. This process involves the use of small-dimension capillaries in physical contact with a resolved protein band within the polyacrylamide gel, providing a large potential drop and high electric field strength at the capillary/gel interface. Several factors controlling the electronic protein transfer, including the applied electric field strength, the electrophoresis buffer concentration, and the capillary dimension, are studied to further enhance the use of field-amplification for sample stacking of extracted SDS-protein complexes. As a result of sample stacking, the extracted proteins from a 50 ng gel loading are present in a narrow ( approximately 80 nL) and highly concentrated (0.46 mg/mL or 3.3 x 10(-5) M for cytochrome c) solution plug. Three model proteins with molecular mass ranging from 14 kDa (cytochrome c) to 116 kDa (beta-galactosidase) are stained by Coomassie blue and electrophoretically extracted from gels with protein loadings as low as 50 ng. The capillary format of the electronic protein transfer technique allows direct deposition of extracted proteins onto a matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) target. Various matrices and solvent compositions are evaluated for the analysis of extracted and concentrated SDS-protein complexes using MALDI-MS. The electronic protein transfer technique, when operated under optimized conditions, is demonstrated for the effective (>70% recovery), speedy (less than 5 min), and sensitive MS identification of gel resolved proteins (as low as 50 ng).  相似文献   

10.
An optimized procedure for the preparation of fabric reinforced polyacrylamide gels for native protein blotting is described. The gels, typically 5% T, 3% C, were internally stabilized with the aid of an AcrylAide-pretreated, hydrophilized polyester fabric, preferably with a 60 microns mesh opening. Ultrathin (120-180 microns) gels were prepared with the flap technique and 500 microns gels with the cassette technique; 500 microns gels with immobilized pH gradients were cast using precision molds and a computer controlled mixing device of four burettes. The fabric reinforced gels could be used either wet or after drying and rehydration. Isoelectric focusing was performed in carrier ampholyte pH gradients or hybrid immobilized pH gradients, supplemented with 1-3% w/v carrier ampholytes. Incorporation of 40-60% w/v glycerol into the gels decisively improved their operational properties. The high glycerol gels, which tolerated field strengths of 900-1700 V/cm for extended periods under steady state focusing conditions, were not afflicted by liquid exudation on the gel surface and showed retarded diffusion of the separated proteins on termination of focusing. By unidirectional capillary blotting, with an intermediate dialysis membrane eliminating bidirectional protein transfer, proteins were blotted to 0.1-0.2 micron pore size nitrocellulose membranes in 10-20 min from ultrathin gels and in 30-60 min from 500 microns gels. Based on quantification of residual protein in the gels after blotting, a transfer efficiency of 60-87% was found for the ultrathin and 53-69% for the 500 microns gels. Semidry electrophoretic blotting was carried out in a modified setup with cooled graphite electrodes. In a continuous Tris-glycine buffer system electrophoretic blotting required only 2-5 min with ultrathin gels and 20 min with 500 microns gels. Marker proteins, including horse spleen ferritin (Mr465,000), could be transferred with 91-96% efficiency.  相似文献   

11.
The preparation of homogeneous ultrathin native polyacrylamide gels, using a basic as well as an acidic buffer system is described. The basic buffer system consists of Tris-HC1/Tris-glycine, the same buffer as in sodium dodecyl sulfate (SDS)-gel electrophoresis but without SDS. The acidic system uses potassium acetate, pH 4.3, as gel buffer and beta-alanine, pH 4.6, acetic acid as electrolytes. The gels are covalently bound on glass plates. Binding of acidic gels requires a special pretreatment of glass plates. The whole procedure is simple and extraordinarily fast: 100-120 min from the start of gel preparation to the end of electrophoresis. Coomassie staining is done in 40 min and silver staining in 90 min. The native gels are excellently suited for diffusion blotting. Further attractive properties of these gels are easy handling, simple drying and dimensional stability.  相似文献   

12.
A method is described for isoelectric focusing of proteins, using an ultrathin-layer polyacrylamide gel on cellophane, followed by electrophoretic transfer of separated proteins onto a nitrocellulose membrane. The polyacrylamide gel is firmly attached to the cellophane and thus protected from mechanical damage; such gels are easily manipulated. Cellophane is permeable to ions and application of this gel support overcomes difficulties resulting from the removal of ultrathin gels from a plastic support on electroblotting. Proteins separated under nondenaturing conditions were transferred onto a nitrocellulose membrane and detected by the concanavalin A-peroxidase technique. The proposed approach makes it possible to analyze the variability of nondenatured proteins and glycoproteins of different origin.  相似文献   

13.
This study represents a systematic evaluation of protocols for protein extraction and cleanup for fruit proteomic analysis. Procedures were optimized using pooled lyophilized banana fruit pulp, which is known to be particularly tricky due to high concentrations of soluble polysaccharides, phenolics, and other substances that interfere with protein extraction and purification. A total of 18 combinations of three protein extraction procedures (SDS‐based, Triton X‐100‐based, and phenol‐based), three protein precipitating agents (ammonium acetate/methanol, TCA/acetone, and acetone), and two resolubilization buffers (classical Rabilloud and the so‐called R2D2) were compared for total protein yields and efficiency of recovery. The results demonstrate that while losses in total recovered protein are unavoidable, the degree of these losses depends on the method combinations used. Combinations based on buffer‐saturated phenol always gave the highest yields, and overall recovery and purity was highest when acetone was combined with the R2D2 buffer for protein purification and concentration. Comparative 2D‐PAGE analysis confirmed that this method combination produced high‐quality and reproducible gels and the largest numbers of spots per gel. The usefulness of this methodology was demonstrated on ripe fruits from several other species and shown to give excellent results.  相似文献   

14.
An ultra-fast analysis of proteins, based on sodium dodecyl sulfate (SDS)-mediated gel electrophoresis was developed, in which protein molecular mass standards ranging from Mr 14 200 to 94 700 were separated within 3 min. A 50 μm diameter uncoated fused-silica capillary column and a high field strength are used. The effects of the SDS concentration in the separation gel buffer and in the sample buffer on the resolution of protein test mixture were studied. The influence of the heat treatment of the sample prior analysis is also discussed.  相似文献   

15.
Lee KK  Liu PC  Chen YL 《Electrophoresis》1999,20(17):3343-3346
Electrophoretic characterization of a novel cysteine protease produced by pathogenic luminous Vibrio harveyi, originally isolated from diseased tiger prawn Penaeus monodon in Taiwan, is demonstrated in the present study using native polyacrylamide gel electrophoresis (native PAGE), sodium dodecyl sulfate-PAGE (SDS-PAGE), crossed immunoelectrophoresis (CIE) and isoelectric focusing (IEF) gels. The protease has a pI of 6.4 and exhibits a fast-migrating feature in native-PAGE and CIE gels indicating that it is a negatively charged protease. The protease electrophoresed as a 22 kDa protein band in native- and SDS-PAGE (in SDS - buffer with or without the presence of 2-mercaptoethanol) while it electrophoresed as a 38 kDa protein band in SDS-PAGE when the samples were boiled for 10 min prior to electrophoresis. The results reveal that the enzyme is an SDS-resistant monomeric protease and its high negative charge is not influenced by SDS (detergent) without boiling the sample. The present results are useful in determining proteins of similar nature to this unique cysteine protease.  相似文献   

16.
Sun G  Anderson VE 《Electrophoresis》2004,25(7-8):959-965
Prevention of artifactual protein oxidation occurring during sodium dodecyl sulfate (SDS) acrylamide gel electrophoresis is critical for identifying physiological protein oxidation implicated in human diseases due to the routine use of gel electrophoresis to separate the multiple proteins in proteomic studies. To develop a methodology that completely prevents artifactual protein oxidation in SDS acrylamide gel electrophoresis, cytochrome c was electrophoresed on polyacrylamide gels and subjected to trypsin in-gel digestion followed by tryptic peptide analysis by mass spectrometry. It was found that degassing the acrylamide solution to remove molecular oxygen prior to gel polymerization is a crucial process to protect the electrophoresed protein from reactive oxygen species generated during electrophoresis. However, significant artifactual protein oxidation remains that can only be eliminated entirely, if proteins are electrophoresed on an SDS gel photopolymerized with flavin as the photoinitiator and thioglycolate included in the cathode buffer as a reactive oxygen species scavenger. Using this combination of methodologies, cytochrome c isolated from adult rat heart mitochondria was purified and digested followed by mass spectrometric analysis, demonstrating the requisite high resolution of the polyacrylamide gel and the entire elimination of artifactual oxidation.  相似文献   

17.
Ruan Y  Wan M 《Electrophoresis》2007,28(18):3333-3340
The separation of integral and peripheral membrane proteins is still a challenge, although many achievements have been made in the 2-DE-based membrane proteomics. Using a human breast cancer cell line, MCF-7, we investigated the influences of Tris, reducing reagents, cup loading, and SDS on membrane protein solubilization and separation by 2-DE. The addition of Tris to the sample solution improved the solubilization of the membrane-enriched fraction, and the best-quality gel patterns were obtained at 20 mM Tris. Tributylphosphine (TBP), a reducing agent, was not optimum in the 2-DE process because it not only decreased the solubilization of hydrophobic proteins but also caused some proteins, such as hsp60, prohibitin, and actin, to be resolved to a string of spots. However, when combined with DTT, TBP could improve the resolution of 2-DE patterns. Cup loading significantly facilitated the entrance of membrane proteins into IPG strips and over 1000 protein spots with high resolution were visualized. Adopting this strategy, an ATP synthase alpha chain was resolved into two adjacent spots for the first time in 2-DE gel patterns through the adding DTT in the middle of the IEF. A high SDS concentration in the equilibration buffer enhanced the transfer and increased the staining intensity of 50% of the protein spots in the gels, but also resulted in losses of some spots.  相似文献   

18.
Pro-Q Emerald 488 glycoprotein stain reacts with periodic acid-oxidized carbohydrate groups, generating a bright green-fluorescent signal on glycoproteins. The stain permits detection of less than 5-18 ng of glycoprotein per band, depending upon the nature and the degree of protein glycosylation, making it roughly 8-16-fold more sensitive than the standard colorimetric periodic acid-Schiff base method using acidic fuchsin dye (pararosaniline). The green-fluorescent signal from Pro-Q Emerald 488 stain may optimally be visualized using charge-coupled device/xenon arc lamp-based imaging systems or 470-488 nm laser-based gel scanners. Though glycoprotein detection may be performed on transfer membranes, direct detection in gels avoids electroblotting and the specificity of staining is better in gels. After detecting glycoproteins with Pro-Q Emerald 488 dye, total protein profiles may subsequently be detected using SYPRO Ruby protein gel stain. Using computer-assisted registration techniques, images may then be merged to generate differential display maps.  相似文献   

19.
Characterization of membrane proteins remains an analytical challenge because of difficulties associated with tedious isolation and purification. This study presents the utility of the polyvinylidene difluoride (PVDF) membrane for direct sub-proteome profiling and membrane protein characterization by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The hydrophobic adsorption of protein, particularly membrane proteins, on the PVDF surface enables efficient on-PVDF washing to remove high concentrations of detergents and salts, such as up to 5% sodium dodecyl sulfate (SDS). The enhanced spectrum quality for MALDI detection is particularly notable for high molecular weight proteins. By using on-PVDF washing prior to MALDI detection, we obtained protein profiles of the detergent-containing and detergent-insoluble membrane fractions from Methylococcus capsulatus (Bath). Similar improvements of signal-to-noise ratios were shown on the MALDI spectra for proteins electroblotted from SDS-polyacrylamide gel electrophoresis (SDS-PAGE) onto the PVDF membrane. We have applied this strategy to obtain intact molecular weights of the particulate methane monooxygenase (pMMO) composed of three intrinsic membrane-bound proteins, PmoA, PmoB, and PmoC. Together with peptide sequencing by tandem mass spectrometry, post-translational modifications including N-terminal acetylation of PmoA and PmoC and alternative C-terminal truncation of PmoB were identified. The above results show that PVDF-aided MALDI-MS can be an effective approach for profiling and characterization of membrane proteins.  相似文献   

20.
2-DE is one of the most powerful methods for analyzing proteins expressed in cells and tissues. Immunodetection of proteins blotted on a polymer membrane is the method of choice for detecting specific proteins in 2-D gels. To precisely locate spots of immunoreactive proteins in 2-D gels, both dye staining and immunodetection were performed on the same PVDF membrane. Prior to immunodetection, nonspecific adsorption of the antibodies to the membrane was blocked with a synthetic polymer-based reagent (N-102) after protein transfer. The protein was then stained with colloidal gold or CBB followed by protein spot identification by LC-MS. Described herein is a method for multiplex analysis of proteins transferred to a PVDF membrane. Proteins that were phosphorylated at tyrosine in the phosphoproteome of rice callus or human ovarian cancer cells were detected by immunoblotting and subsequently identified with high precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号